Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The man in the moon

12.06.2009
Planetologists from Münster involved in NASA mission

"I've booked my flight to Florida, I can hardly wait for things to get going," says Prof. Harald Hiesinger from the Institute of Planetology at Münster University, who is looking forward to one very special event - the lift-off of an ATLAS V rocket in Cape Canaveral.

Weather conditions permitting, the rocket is due to send the so-called Lunar Reconnaissance Orbiter (LRO) into orbit round the moon on June 17. Also travelling on board is an experiment that Hiesinger is working on.

A total of six experiments are being flown into space by NASA. They range from the laser altitude scanner aimed at producing a highly exact topographical map, and an instrument for measuring temperatures on the moon, to a piece of apparatus designed to measure possible biological effects of cosmic radiation. Also on board is "LCROSS", a satellite which will divide into two parts upon arriving at the moon. One half will make a pinpoint crash landing on the moon and the other half will fly into the cloud of dust thus raised and analyse the moon material before likewise falling down on to the moon's surface.

Hiesinger's project is "LROC", three Lunar Reconnaissance Orbiter Cameras which are to bring to light hitherto unseen details of the moon. "The amount of data will exceed anything gathered by lunar missions so far," promises Hiesinger. He estimates that it will be around 70 terabytes in the first year. Two of the cameras, which were developed especially for this mission, have a focal length of 70 centimetres and a diameter of 27 centimetres. These narrow-angle cameras will be providing black-and-white pictures with a resolution of half a metre. There is also a smaller, wide-angle camera which, with a resolution of 100 metres, can produce colour pictures and will cover all of the moon.

The cameras serve a variety of different purposes. One of the most important is to determine the age of the moon's surface. The age of the moon itself - 4.527 billion years - was ascertained very precisely four years ago by Prof. Klaus Mezger from the Centre of Geochronology. "That was a fantastic achievement, but Mezger was only able to work with a few rock samples. We, on the other hand, have the whole moon in our sights and will therefore be able to determine geological activity over longer periods of time." Hiesinger's team will be using a simple trick: they'll simply be counting the number of craters, because the more impacts a planet has suffered, the older its surface is.

The work involving the precision cameras has another objective. They can help find landing spots for future missions, whether manned or unmanned. Hiesinger also wants to follow up the theory that there are remains of water ice in the particularly deep craters at the poles. This water could have come from gas emissions from inside the moon or have been brought to the moon's surface by comets. The craters at the poles are so deep that sunlight never penetrates them. At ground level temperatures are up to -230 degrees Celsius. "In contrast, we have permanent sunlight at the edges of some craters," explains Hiesinger. "These would be ideal landing spots because the solar energy at these crater edges could be used, and at the same time the necessary water could be extracted from the ice at the bottom." And, he adds, the Japanese SELENE/Kaguya mission has just recently demonstrated that the cameras are sensitive enough to see down to the bottom of the crater.

Hiesinger wants to study not only the age of the moon, but also its composition. The wide-angle camera has various colour channels, including ultra-violet and infra-red. "Every mineral has special spectral features which enable us to safely identify it," says Hiesinger. The element titanium is what interests him most.

Funding for the mission is assured for one year initially. The mission could, however, be continued as LRO has enough fuel on board. Hiesinger hopes so, as the two narrow-angle cameras can only capture a fraction of the moon's surface in one year - around ten percent, he reckons. Nevertheless, the amount of data will be gigantic and it will be sent by the probe back through space to Arizona State University, where it will be stored. A little later, selected data will be sent over to Germany. "We don't have the storage space to cope with all the data," Hiesinger explains. Nor do they have the staff necessary to evaluate everything. That's why the first data are due to be made public half a year after they have been calibrated, so that all scientists can have access to them. "We'll be getting so much data that evaluating them will keep generations of scientists busy," he says.

"Of course we'll be cherry-picking," Hiesinger adds with a grin. "After all, we invested a lot of time and money in getting the project off the ground." It isn't easy to be selected for a planet mission, he adds. However, it isn't the first success of this kind for the Institute of Planetology. The "BepiColombo" probe is being sent to Mercury in 2014 with the "MERTIS" project, and Hiesinger is also involved in "Mars Express". The Münster scientists are also involved not only in "Moonrise", the return of probes from the largest impact crater on the moon, but also in the "ExoMars" mission to the red planet. So although Hiesinger certainly has experience of planetary missions, he still says, "A rocket lift-off really is something special - you don't want to be sitting at home when it happens." The only thing to hope for now is that the weather plays along and the Lunar Reconnaissance Orbiter can take off as planned on June 17 ...

Brigitte Nussbaum | idw
Further information:
http://lunar.gsfc.nasa.gov/
http://www.uni-muenster.de/Planetology/en/homepage/homepage.html

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>