Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making stars: Studies show how cosmic dust and gas shape galaxy evolution

23.11.2010
Astronomers find cosmic dust annoying when it blocks their view of the heavens, but without it the universe would be devoid of stars. Cosmic dust is the indispensable ingredient for making stars and for understanding how primordial diffuse gas clouds assemble themselves into full–blown galaxies.

“Formation of galaxies is one of the biggest remaining questions in astrophysics,” said Andrey Kravtsov, associate professor in astronomy & astrophysics at the University of Chicago.

Astrophysicists are moving closer to answering that question, thanks to a combination of new observations and supercomputer simulations, including those conducted by Kravtsov and Nick Gnedin, a physicist at Fermi National Accelerator Laboratory.

Gnedin and Kravtsov published new results based on their simulations in the May 1, 2010 issue of The Astrophysical Journal, explaining why stars formed more slowly in the early history of the universe than they did much later. The paper quickly came to the attention of Robert C. Kennicutt Jr., director of the University of Cambridge’s Institute of Astronomy and co–discoverer of one of the key observational findings about star formation in galaxies, known as the Kennicutt–Schmidt relation.

In the June 3, 2010 issue of Nature, Kennicutt noted that the recent spate of observations and theoretical simulations bodes well for the future of astrophysics. In their Astrophysical Journal paper, Kennicutt wrote, “Gnedin and Kravtsov take a significant step in unifying these observations and simulations, and provide a prime illustration of the recent progress in the subject as a whole.”

Star–formation law

Kennicutt’s star–formation law relates the amount of gas in galaxies in a given area to the rate at which it turns into stars over the same area. The relation has been quite useful when applied to galaxies observed late in the history of the universe, but recent observations by Arthur Wolfe of the University of California, San Diego, and Hsiao–Wen Chen, assistant professor in astronomy and astrophysics at UChicago, indicate that the relation fails for galaxies observed during the first two billion years following the big bang.

Gnedin and Kravtsov’s work successfully explains why. “What it shows is that at early stages of evolution, galaxies were much less efficient in converting their gas into stars,” Kravtsov said.

Stellar evolution leads to increasing abundance of dust, as stars produce elements heavier than helium, including carbon, oxygen, and iron, which are key elements in dust particles.

“Early on, galaxies didn’t have enough time to produce a lot of dust, and without dust it’s very difficult to form these stellar nurseries,” Kravtsov said. “They don’t convert the gas as efficiently as galaxies today, which are already quite dusty.”

The star–formation process begins when interstellar gas clouds become increasingly dense. At some point the hydrogen and helium atoms start combining to form molecules in certain cold regions of these clouds. A hydrogen molecule forms when two hydrogen atoms join. They do so inefficiently in empty space, but find each other more readily on the surface of a cosmic dust particle.

“The biggest particles of cosmic dust are like the smallest particles of sand on good beaches in Hawaii,” Gnedin said.

These hydrogen molecules are fragile and easily destroyed by the intense ultraviolet light emitted from massive young stars. But in some galactic regions dark clouds, so–called because of the dust they contain, form a protective layer that protects the hydrogen molecules from the destructive light of other stars.

Stellar nurseries

“I like to think about stars as being very bad parents, because they provide a bad environment for the next generation,” Gnedin joked. The dust therefore provides a protective environment for stellar nurseries, Kravtsov noted.

“There is a simple connection between the presence of dust in this diffuse gas and its ability to form stars, and that’s something that we modeled for the first time in these galaxy–formation simulations,” Kravtsov said. “It’s very plausible, but we don’t know for sure that that’s exactly what’s happening.”

The Gnedin–Kravtsov model also provides a natural explanation for why spiral galaxies predominately fill the sky today, and why small galaxies form stars slowly and inefficiently.

“We usually see very thin disks, and those types of systems are very difficult to form in galaxy–formation simulations,” Kravtsov said.

That’s because astrophysicists have assumed that galaxies formed gradually through a series of collisions. The problem: simulations show that when galaxies merge, they form spheroidal structures that look more elliptical than spiral.

But early in the history of the universe, cosmic gas clouds were inefficient at making stars, so they collided before star formation occurred. “Those types of mergers can create a thin disk,” Kravtsov said.

As for small galaxies, their lack of dust production could account for their inefficient star formation. “All of these separate pieces of evidence that existed somehow all fell into one place,” Gnedin observed. “That’s what I like as a physicist because physics, in general, is an attempt to understand unifying principles behind different phenomena.”

More work remains to be done, however, with input from newly arrived postdoctoral fellows at UChicago and more simulations to be performed on even more powerful supercomputers. “That’s the next step,” Gnedin said.

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>