Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making holograms look more real

27.06.2011
A full-color three-dimensional hologram has been created by harnessing electron density waves in thin metal films

Although human vision is capable of perceiving objects in three dimensions (3D), we spend much of our day looking at two-dimensional screens.

The latest televisions and monitors can trick us into perceiving depth, by presenting different images to our left and right eyes, but they require special-purpose glasses, or specialized large-area lenses applied directly to the screen.

Holographic 3D imaging, on the other hand, presents a ‘true’ representation of an object by exactly reconstructing the light rays that would come from that object if it were present.

However, integrating color into 3D holograms has proved a challenge. Consequently, holograms are usually either monochromatic, or—as in the case of credit card holograms—colored in a way that does not correspond to the real object. Now, creating true, 3D color holograms has become possible using a technique developed by Satoshi Kawata and colleagues at the RIKEN Advanced Science Institute in Wako.

The researchers’ hologram consists of a periodic grating, which is encoded with an interference pattern and covered with a thin film of silver. As with other holograms, when properly illuminated at a later time, the hologram can recreate the light rays that would result from the original object if it were present. The innovation comes in how this grating interacts with the silver film, whose electrons can be excited into density waves called surface plasmon polaritons (SPPs). SPPs are associated with a short-range, non-radiative electromagnetic field. When this field interacts with the grating, it is converted into visible light that can be observed by a viewer at a distance.

Critically, the nature of the SPPs excited in the silver depends on the angle of light that excites them. Therefore a particular type of SPP can be created by illuminating the film at a particular angle, and this in turn leads to a particular image being observed by the viewer. By encoding red, green and blue images into their grating, and then illuminating the grating and silver film simultaneously with three light beams at different angles, Kawata and colleagues produced a full-color hologram

To make the hologram easier to operate, the researchers also coated their silver film with a layer of silicon dioxide. This increased the separation between the angles of the incoming beams, and reduced the angular precision required. The team notes that the hologram works with beams of white light, and does not suffer from the ‘ghosting’ that is apparent with credit card holograms.

The corresponding author for this highlight is based at the Nanophotonics Laboratory, RIKEN Advanced Science Institute

Reference

Ozaki, M., Kato, J. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>