Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making holograms look more real

27.06.2011
A full-color three-dimensional hologram has been created by harnessing electron density waves in thin metal films

Although human vision is capable of perceiving objects in three dimensions (3D), we spend much of our day looking at two-dimensional screens.

The latest televisions and monitors can trick us into perceiving depth, by presenting different images to our left and right eyes, but they require special-purpose glasses, or specialized large-area lenses applied directly to the screen.

Holographic 3D imaging, on the other hand, presents a ‘true’ representation of an object by exactly reconstructing the light rays that would come from that object if it were present.

However, integrating color into 3D holograms has proved a challenge. Consequently, holograms are usually either monochromatic, or—as in the case of credit card holograms—colored in a way that does not correspond to the real object. Now, creating true, 3D color holograms has become possible using a technique developed by Satoshi Kawata and colleagues at the RIKEN Advanced Science Institute in Wako.

The researchers’ hologram consists of a periodic grating, which is encoded with an interference pattern and covered with a thin film of silver. As with other holograms, when properly illuminated at a later time, the hologram can recreate the light rays that would result from the original object if it were present. The innovation comes in how this grating interacts with the silver film, whose electrons can be excited into density waves called surface plasmon polaritons (SPPs). SPPs are associated with a short-range, non-radiative electromagnetic field. When this field interacts with the grating, it is converted into visible light that can be observed by a viewer at a distance.

Critically, the nature of the SPPs excited in the silver depends on the angle of light that excites them. Therefore a particular type of SPP can be created by illuminating the film at a particular angle, and this in turn leads to a particular image being observed by the viewer. By encoding red, green and blue images into their grating, and then illuminating the grating and silver film simultaneously with three light beams at different angles, Kawata and colleagues produced a full-color hologram

To make the hologram easier to operate, the researchers also coated their silver film with a layer of silicon dioxide. This increased the separation between the angles of the incoming beams, and reduced the angular precision required. The team notes that the hologram works with beams of white light, and does not suffer from the ‘ghosting’ that is apparent with credit card holograms.

The corresponding author for this highlight is based at the Nanophotonics Laboratory, RIKEN Advanced Science Institute

Reference

Ozaki, M., Kato, J. & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>