Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Magnetic nano-'shepherds' organize cells

The power of magnetism may address a major problem facing bioengineers as they try to create new tissue -- getting human cells to not only form structures, but to stimulate the growth of blood vessels to nourish that growth.

A multidisciplinary team of investigators from Duke University, Case Western Reserve University and the University of Massachusetts, Amherst created an environment where magnetic particles suspended within a specialized solution act like molecular sheep dogs.

In response to external magnetic fields, the shepherds nudge free-floating human cells to form chains which could potentially be integrated into approaches for creating human tissues and organs.

The cells not only naturally adhere to each other upon contact, the researchers said, but the aligned cellular configurations may promote or accelerate the creation and growth of tiny blood vessels.

"We have developed an exciting way of using magnetism to manipulate human cells floating freely in a solution containing magnetic nanoparticles" said Randall Erb, fourth-year graduate student in the laboratory of Benjamin Yellen, assistant professor of Mechanical Engineering and Materials Science, at Duke University's Pratt School of Engineering. "This new cell assembly process holds much promise for tissue engineering research and offers a novel way to organize cells in an inexpensive, easily accessible way."

Melissa Krebs, third-year biomedical engineering graduate student at Case Western and Erb's sister, co-authored a paper appearing online in advance of the May publication of Nano Letters, a journal published by the American Chemical Society.

"The cells have receptors on their surfaces that have an affinity for other cells," Krebs said. "They become sticky and attach to each other. When endothelial cells get together in a linear fashion, as they did in our experiments, it may help them to organize into tiny tubules."

The iron-containing nanoparticles used by the researchers are suspended within a liquid known as a ferrofluid. One of the unique properties of these ferrofluids is that they become highly magnetized in the presence of external magnetism, which allows researchers to readily manipulate the chain formation by altering the strength of the magnetic field.

At the end of the process, the nanoparticles are simply washed away, leaving a linear chain of cells. That the cells remain alive, healthy and relatively unaltered without any harmful effects from the process is one of the major advances of the new approach over other strategies using magnetism.

"Others have tried using magnetic particles either within or on the surface of the cells," Erb said. "However, the iron in the nanoparticles can be toxic to cells. Also, the process of removing the nanoparticles afterward can be harmful to the cell and its function."

The key ingredient for these studies was the synthesis of non-toxic ferrofluids by colleagues Bappaditya Samanta and Vincent Rotello at the University of Massachusetts, who developed a method for coating the magnetic nanoparticles with bovine serum albumin (BSA), a protein derived from cow blood. BSA is a stable protein used in many experiments because it is biochemically inert. In these experiments, the BSA shielded the cells from the toxic iron.

"The other main benefit of our approach is that we are creating three-dimensional cell chains without any sophisticated techniques or equipment," Krebs said. "Any type of tissue we'd ultimately want to engineer will have to be three-dimensional."

For their experiments, the researchers used human umbilical vein endothelial cells. Others types of cells have also been used, and it appears to the researchers that this new approach can work with any type of cell.

"While still in the early stages, we have shown that we can form oriented cellular structures," said Eben Alsberg, assistant professor of Biomedical Engineering and Orthopedic Surgery at Case Western and senior author of the paper. "The next step is to see if the spatial arrangement of these cells in three dimensions will promote vascular formation. A major hurdle in tissue engineering has been vascularization, and we hope that this technology may help to address the problem."

Richard Merritt | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>