Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic nano-'shepherds' organize cells

02.04.2009
The power of magnetism may address a major problem facing bioengineers as they try to create new tissue -- getting human cells to not only form structures, but to stimulate the growth of blood vessels to nourish that growth.

A multidisciplinary team of investigators from Duke University, Case Western Reserve University and the University of Massachusetts, Amherst created an environment where magnetic particles suspended within a specialized solution act like molecular sheep dogs.

In response to external magnetic fields, the shepherds nudge free-floating human cells to form chains which could potentially be integrated into approaches for creating human tissues and organs.

The cells not only naturally adhere to each other upon contact, the researchers said, but the aligned cellular configurations may promote or accelerate the creation and growth of tiny blood vessels.

"We have developed an exciting way of using magnetism to manipulate human cells floating freely in a solution containing magnetic nanoparticles" said Randall Erb, fourth-year graduate student in the laboratory of Benjamin Yellen, assistant professor of Mechanical Engineering and Materials Science, at Duke University's Pratt School of Engineering. "This new cell assembly process holds much promise for tissue engineering research and offers a novel way to organize cells in an inexpensive, easily accessible way."

Melissa Krebs, third-year biomedical engineering graduate student at Case Western and Erb's sister, co-authored a paper appearing online in advance of the May publication of Nano Letters, a journal published by the American Chemical Society.

"The cells have receptors on their surfaces that have an affinity for other cells," Krebs said. "They become sticky and attach to each other. When endothelial cells get together in a linear fashion, as they did in our experiments, it may help them to organize into tiny tubules."

The iron-containing nanoparticles used by the researchers are suspended within a liquid known as a ferrofluid. One of the unique properties of these ferrofluids is that they become highly magnetized in the presence of external magnetism, which allows researchers to readily manipulate the chain formation by altering the strength of the magnetic field.

At the end of the process, the nanoparticles are simply washed away, leaving a linear chain of cells. That the cells remain alive, healthy and relatively unaltered without any harmful effects from the process is one of the major advances of the new approach over other strategies using magnetism.

"Others have tried using magnetic particles either within or on the surface of the cells," Erb said. "However, the iron in the nanoparticles can be toxic to cells. Also, the process of removing the nanoparticles afterward can be harmful to the cell and its function."

The key ingredient for these studies was the synthesis of non-toxic ferrofluids by colleagues Bappaditya Samanta and Vincent Rotello at the University of Massachusetts, who developed a method for coating the magnetic nanoparticles with bovine serum albumin (BSA), a protein derived from cow blood. BSA is a stable protein used in many experiments because it is biochemically inert. In these experiments, the BSA shielded the cells from the toxic iron.

"The other main benefit of our approach is that we are creating three-dimensional cell chains without any sophisticated techniques or equipment," Krebs said. "Any type of tissue we'd ultimately want to engineer will have to be three-dimensional."

For their experiments, the researchers used human umbilical vein endothelial cells. Others types of cells have also been used, and it appears to the researchers that this new approach can work with any type of cell.

"While still in the early stages, we have shown that we can form oriented cellular structures," said Eben Alsberg, assistant professor of Biomedical Engineering and Orthopedic Surgery at Case Western and senior author of the paper. "The next step is to see if the spatial arrangement of these cells in three dimensions will promote vascular formation. A major hurdle in tissue engineering has been vascularization, and we hope that this technology may help to address the problem."

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>