Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Fields Play Larger Role in Star Formation than Previously Thought

14.09.2009
The simple picture of star formation calls for giant clouds of gas and dust to collapse inward due to gravity, growing denser and hotter until igniting nuclear fusion. In reality, forces other than gravity also influence the birth of stars. New research shows that cosmic magnetic fields play a more important role in star formation than previously thought.

A molecular cloud is a cloud of gas that acts as a stellar nursery. When a molecular cloud collapses, only a small fraction of the cloud's material forms stars. Scientists aren't sure why.

Gravity favors star formation by drawing material together, therefore some additional force must hinder the process. Magnetic fields and turbulence are the two leading candidates. (A magnetic field is produced by moving electrical charges. Stars and most planets, including Earth, exhibit magnetic fields.) Magnetic fields channel flowing gas, making it hard to drawn the gas from all directions, while turbulence stirs the gas and induces an outward pressure that counteracts gravity.

"The relative importance of magnetic fields versus turbulence is a matter of much debate," said astronomer Hua-bai Li of the Harvard-Smithsonian Center for Astrophysics. "Our findings serve as the first observational constraint on this issue."

Li and his team studied 25 dense patches, or cloud cores, each one about a light-year in size. The cores, which act as seeds from which stars form, were located within molecular clouds as much as 6,500 light-years from Earth. (A light-year is the distance light travels in a year, or 6 trillion miles.)

The researchers studied polarized light, which has electric and magnetic components that are aligned in specific directions. (Some sunglasses work by blocking light with specific polarization.) From the polarization, they measured the magnetic fields within each cloud core and compared them to the fields in the surrounding, tenuous nebula.

The magnetic fields tended to line up in the same direction, even though the relative size scales (1 light-year cores versus 1000 light-year nebulas) and densities were different by orders of magnitude. Since turbulence would tend to churn the nebula and mix up magnetic field directions, their findings show that magnetic fields dominate turbulence in influencing star birth.

"Our result shows that molecular cloud cores located near each other are connected not only by gravity but also by magnetic fields," said Li. "This shows that computer simulations modeling star formation must take strong magnetic fields into account."

In the broader picture, this discovery aids our understanding of how stars form and, therefore, how the universe has come to look the way it is today.

The paper detailing these findings has been accepted for publication in The Astrophysical Journal and is available online at http://arxiv.org/abs/0908.1549.

Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>