Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Magellanic Group And Its Seven Dwarf Galaxies

15.10.2008
Astronomers at the University of Zurich have proposed a new theory for the formation of dwarf galaxies. In a paper published in «The Astrophysical Journal», Elena D’Onghia and George Lake solve several outstanding problems by comparing observed dwarfs to supercomputer simulations of their formation (Astrophysical Journal Letters, Volume 686, Nr. 2, p. L61).

The properties of dwarf galaxies have presented many challenges. «Ten years ago, my team at the University of Washington found that our cosmological model predicts 30-50 times as many small objects as we see. If the numbers had been nearly equal, that would have been an easy success for the model. If there were none, we might figure out a way to keep any from forming» says lead author George Lake «but at the risk of confusing fairy tales, having 30-50 times fewer dwarfs than predicted presents a ‹Goldilock’s problem›. How do we keep most of them from forming, but not all?»

The main theory to prevent the formation of luminous dwarfs has been that events in the early Universe remove the gas that might have formed stars. The first of these events is the global heating and reionization of the Universe that happens within a billion years after the big bang. In this theory, the small fraction of dwarfs that form quickly enough escape destruction. «While this is an interesting idea, it doesn’t explain why most of the dwarfs have stars that form much later than this» says Lake.

There is also the odd grouping of dwarfs. «Like those of the correct fairy tale, the dwarfs that we have are ‹friendly›, they group together both within our galaxy and in nearby associations» continues co-author Elena D’Onghia. «One might even think they’ve seen the movie as seven of them are associated with The Magellanic Clouds, the largest satellites of the Milky Way that are easily seen if you are lucky enough to view the sky from the Southern Hemisphere».

In the past, other researchers have noticed that as galaxies form hierarchically in the Universe, that many of the pieces come in as groups of small objects. «The critical element of these groups of dwarfs isn’t that they are a club, but rather they have a ‹dwarf leader› or ‹parent›. When events in the early Universe expels the gas in the smallest object, the dwarf leader shepherds this gas and allows its small companions to recapture it at later times» says D’Onghia.

Lake and D’Onghia have put all these puzzle pieces together to propose that the Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way dark halo not long ago. Seven of the eleven brightest satellite galaxies of our Milky Way were part of this group. New simulations performed at the University of Zurich show that it is typical for dwarf galaxies to form in groups and enter large galaxies at late times. The group is then disrupted by tidal forces, spreading the small population of luminous dwarfs around the Milky Way making the satellite galaxies we observe today.

New measurements by scientists at Harvard University including Nitya Kallivayalil and Gurtina Besla indicate that the Magellanic Clouds are moving faster than previously believed and may have entered the Milky Way recently. «The scenario proposed by D’Onghia and Lake fits in well with these observational determinations and may account for many facets of the satellite population of the Milky Way», according to Lars Hernquist of Harvard University.

As well as wrapping up several problems in galaxy formation, their theory makes clear predictions that will be tested rapidly. One such prediction is that isolated dwarf and satellite galaxies will be found to have companions. Since their theory was first circulated, the dwarf galaxy Leo IV was found to have another little Leo V companion in July. The existence of nearby dwarf associations also supports this new theory.

Lake and D’Onghia are located in the Institute of Theoretical Physics at the University of Zurich. This Institute is known for the pioneering work in relativity and cosmology. Most recently, they have been leaders in predicting the distribution and properties of dark matter in the Universe.

Beat Mueller | alfa
Further information:
http://www.mediadesk.uzh.ch/mitteilung.php?text_id=329&grp=aktuell

Further reports about: Astrophysical Dwarf galaxies Milky Way Universe clouds dwarf galaxies satellite galaxies

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>