Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Magellanic Group And Its Seven Dwarf Galaxies

15.10.2008
Astronomers at the University of Zurich have proposed a new theory for the formation of dwarf galaxies. In a paper published in «The Astrophysical Journal», Elena D’Onghia and George Lake solve several outstanding problems by comparing observed dwarfs to supercomputer simulations of their formation (Astrophysical Journal Letters, Volume 686, Nr. 2, p. L61).

The properties of dwarf galaxies have presented many challenges. «Ten years ago, my team at the University of Washington found that our cosmological model predicts 30-50 times as many small objects as we see. If the numbers had been nearly equal, that would have been an easy success for the model. If there were none, we might figure out a way to keep any from forming» says lead author George Lake «but at the risk of confusing fairy tales, having 30-50 times fewer dwarfs than predicted presents a ‹Goldilock’s problem›. How do we keep most of them from forming, but not all?»

The main theory to prevent the formation of luminous dwarfs has been that events in the early Universe remove the gas that might have formed stars. The first of these events is the global heating and reionization of the Universe that happens within a billion years after the big bang. In this theory, the small fraction of dwarfs that form quickly enough escape destruction. «While this is an interesting idea, it doesn’t explain why most of the dwarfs have stars that form much later than this» says Lake.

There is also the odd grouping of dwarfs. «Like those of the correct fairy tale, the dwarfs that we have are ‹friendly›, they group together both within our galaxy and in nearby associations» continues co-author Elena D’Onghia. «One might even think they’ve seen the movie as seven of them are associated with The Magellanic Clouds, the largest satellites of the Milky Way that are easily seen if you are lucky enough to view the sky from the Southern Hemisphere».

In the past, other researchers have noticed that as galaxies form hierarchically in the Universe, that many of the pieces come in as groups of small objects. «The critical element of these groups of dwarfs isn’t that they are a club, but rather they have a ‹dwarf leader› or ‹parent›. When events in the early Universe expels the gas in the smallest object, the dwarf leader shepherds this gas and allows its small companions to recapture it at later times» says D’Onghia.

Lake and D’Onghia have put all these puzzle pieces together to propose that the Magellanic Clouds were the largest members of a group of dwarf galaxies that entered the Milky Way dark halo not long ago. Seven of the eleven brightest satellite galaxies of our Milky Way were part of this group. New simulations performed at the University of Zurich show that it is typical for dwarf galaxies to form in groups and enter large galaxies at late times. The group is then disrupted by tidal forces, spreading the small population of luminous dwarfs around the Milky Way making the satellite galaxies we observe today.

New measurements by scientists at Harvard University including Nitya Kallivayalil and Gurtina Besla indicate that the Magellanic Clouds are moving faster than previously believed and may have entered the Milky Way recently. «The scenario proposed by D’Onghia and Lake fits in well with these observational determinations and may account for many facets of the satellite population of the Milky Way», according to Lars Hernquist of Harvard University.

As well as wrapping up several problems in galaxy formation, their theory makes clear predictions that will be tested rapidly. One such prediction is that isolated dwarf and satellite galaxies will be found to have companions. Since their theory was first circulated, the dwarf galaxy Leo IV was found to have another little Leo V companion in July. The existence of nearby dwarf associations also supports this new theory.

Lake and D’Onghia are located in the Institute of Theoretical Physics at the University of Zurich. This Institute is known for the pioneering work in relativity and cosmology. Most recently, they have been leaders in predicting the distribution and properties of dark matter in the Universe.

Beat Mueller | alfa
Further information:
http://www.mediadesk.uzh.ch/mitteilung.php?text_id=329&grp=aktuell

Further reports about: Astrophysical Dwarf galaxies Milky Way Universe clouds dwarf galaxies satellite galaxies

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>