Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Louisiana Tech faculty, students making an 'impact' on atomic supercollider

04.12.2009
Tech team is part of ATLAS collaboration for Large Hadron Collider in Switzerland

Faculty and students from Louisiana Tech University are playing an important role in what has been described as "the most complex and comprehensive science project ever assembled on the planet."

The Large Hadron Collider (LHC) project in Geneva, Switzerland is an underground "atom smasher" that seeks to re-enact the beginning of the universe, back to one-billionth of a second after the theorized Big Bang, by accelerating and colliding protons at near the speed of light.

The European Organization for Nuclear Research (CERN) has reported that, after nearly a year of repairs, circulating beams were recently reintroduced into the LHC with the first successful proton collision occurring on November 23.

According to Dick Greenwood, associate professor of physics at Louisiana Tech, the ultimate objectives of the LHC experiments are to test the predictions of the Standard Model of particle physics and to look for new physics beyond the Standard Model.

"These experiments will also provide the general public a deeper understanding of how nature works and will inevitably lead to future technological spinoffs. The development of the Internet, for example, was a spinoff from previous experiments like those at the LHC."

The team from Louisiana Tech is part of the ATLAS collaboration; one of four large multipurpose particle detector systems. ATLAS (which stands for A Toroidal LHC ApparatuS) investigates a wide range of physics, including the search for other dimensions, and particles that could make up 'dark matter.'

"All of the members of the Louisiana Tech ATLAS group are thrilled about the collision event, and of Louisiana Tech's continuing involvement in this scientific enterprise," said Lee Sawyer, associate professor and program chair for the physics department at Louisiana Tech.

Tech's team has directly contributed to the development of data quality software for measuring the energies of the particles produced in the collisions, the design and commissioning of current monitors for the ATLAS inner tracker, Monte Carlo simulations of the physics signals expected in the data, and designs for future upgrades.

"Louisiana Tech's contributions to the LHC research, and the competitive federal funding that supports it, verifies that our science faculty and students are among the best in the world," said Stan Napper, dean of Louisiana Tech's College of Engineering and Science.

"The key to making a difference in our state and for our students is maintaining education and research programs with nationally and internationally recognized quality."

More than 1700 scientists, engineers, students, and technicians from 97 US universities and national laboratories have helped design and build the LHC accelerator and its four massive particle detectors.

Discover, one of the world's premier science and technology magazines, placed the LHC project at No. 2 on its list of the Top 100 Stories of 2008.

Besides helping to either prove or disprove the Big Bang Theory, the LHC experiments could also help scientists address issues such as variations in particle mass, and the dynamics of matter and antimatter.

"Our faculty are contributing in significant ways to this major project of global importance," said Les Guice, Louisiana Tech's vice president for research and development. "The results of their research will impact science and engineering advancements for decades to come."

The success of the LHC's first proton collision is a benchmark for the project and one that the Louisiana Tech team hopes will result in future opportunities and collaborations.

Sawyer adds, "Now the hard work of understanding the detectors and the data being recorded will begin, followed soon I hope by important analyzes and discoveries."

Dave Guerin | EurekAlert!
Further information:
http://www.latech.edu

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>