Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Live fast, die young' galaxies lose the gas that keeps them alive

02.02.2015

Galaxies can die early because the gas they need to make new stars is suddenly ejected, research published today suggests.

Most galaxies age slowly as they run out of raw materials needed for growth over billions of years. But a pilot study looking at galaxies that die young has found some might shoot out this gas early on, causing them to redden and kick the bucket prematurely.


This is an image showing galaxy J0836, the approximate location of the black hole residing at the galaxy's core, and the expelled gas reservoir.

Credit: The International Centre for Radio Astronomy Research

Astrophysicist Ivy Wong, from the University of Western Australia node of the International Centre for Radio Astronomy Research (ICRAR), said there are two main types of galaxies; 'blue' galaxies that are still actively making new stars and 'red' galaxies that have stopped growing.

Most galaxies transition from blue to 'red and dead' slowly after two billion years or more, but some transition suddenly after less than a billion years--young in cosmic terms.

Dr Wong and her colleagues looked for the first time at four galaxies on the cusp of their star formation shutting down, each at a different stage in the transition.

The researchers found that the galaxies approaching the end of their star formation phase had expelled most of their gas.

Dr Wong said it was initially hard to get time on telescopes to do the research because other astronomers did not believe the dying galaxies would have any gas left to see.

The exciting result means the scientists will be able to use powerful telescopes to conduct a larger survey and discover the cause of this sudden shutdown in star formation.

Dr Wong said it is unclear why the gas was being expelled. "One possibility is that it could be blown out by the galaxy's supermassive black hole," she said.

"Another possibility is that the gas could be ripped out by a neighbouring galaxy, although the galaxies in the pilot project are all isolated and don't appear to have others nearby."

Swiss Federal Institute of Technology Professor Kevin Schawinski said the researchers predicted that the galaxies had to rapidly lose their gas to explain their fast deaths.

"We selected four galaxies right at the time where this gas ejection should be occurring," he said. "It was amazing to see that this is exactly what happens!"

The study appeared in the journal Monthly Notices of the Royal Astronomical Society, published by Oxford University Press.

###

Further information: ICRAR is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Original publication details: 'Misalignment between cold gas and stellar components in early-type galaxies' O. Ivy Wong, K. Schawinski, G.I.G. J'ozsa, C.M. Urry, C.J. Lintott, B.D. Simmons, S. Kaviraj and K.L. Masters. Published in the Monthly Notices of the Royal Astronomical Society February 2, 2015. Available at http://mnras.oxfordjournals.org/lookup/doi/10.1093/mnras/stu2724.

Contact Details:
Dr Ivy Wong, ICRAR - UWA
Ph: +61 8 6488 7761 | M: +61 402 828 363 | E: Ivy.Wong@icrar.org

Pete Wheeler, ICRAR Media Contact
Ph: +61 8 6488 7758 | M: +61 423 982 018 | E: Pete.Wheeler@icrar.org

David Stacey, UWA Media Manager
Ph: +61 8 6488 7977 | E: David.Stacey@uwa.edu.au

Professor Kevin Schawinski, (Swiss Federal Institute of Technology, Zurich)
Ph: +44 44 633 07 51 | M: +41 79 647 11 56 | E: Kevin.Schawinski@phys.ethz.ch

Media Contact

Pete Wheeler
pete.wheeler@icrar.org
61-423-982-018

http://www.icrar.org/ 

Pete Wheeler | EurekAlert!

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>