Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What lies beneath: mapping hidden nanostructures

13.02.2012
A new method to map nanostructures within materials may lead to biological imaging of the internal organization of cells

The ability to diagnose and predict the properties of materials is vital, particularly in the expanding field of nanotechnology. Electron and atom-probe microscopy can categorize atoms in thin sheets of material, and in small areas of thicker samples, but it has proven far more difficult to map the constituents of nanostructures inside large, thick objects. X-rays—the most common imaging tool for hard biological materials such as bones—have a limited focal-spot size, so they cannot focus on nanoscale objects.


Figure 1: Images of gold/silver nanoparticles, acquired using a combined method of x-ray ptychography and anomalous x-ray diffraction. Copyright : 2012 Yukio Takahashi

Now, Yukio Takahashi and colleagues at Osaka University, together with researchers at Nagoya University and the RIKEN SPring-8 center in Hyogo, have succeeded for the first time in producing two-dimensional images of nanostructures encased in thick materials on a large scale1. Their work was possible because they designed a new x-ray diffraction microscopy system that does not require a lens.

“The main challenges in this work were to realize x-ray diffraction microscopy with a high resolution and a large field of view, then extend it to element-specific imaging,” Takahashi explains. “We achieved this by establishing a scanning x-ray diffraction imaging technique called x-ray ptychography.”

Ptychography involves taking images of an object that overlap with one another on a series of coinciding lattice points. The researchers combined this technique with x-rays, and included a system to compensate for the drifting of optics during imaging. Takahashi and his colleagues focused the x-rays using so-called ‘Kirkpatrick–Baez mirrors’ that allowed them to collect high-quality diffraction data.
Their system monitors the changes in the diffraction of x-rays at two different energies. The degree of phase difference between the two x-ray energies changes significantly at the absorption edge of the target element. This is related to the atomic number of the element, meaning that the elements present in the material can be identified. To verify that their system works, the researchers deposited gold/silver nanoparticles around 200 nanometers in size on a silicon nitride membrane, and produced high-resolution and large-scale images of the particles. The resolutions were better than 10 nanometers (Fig. 1).

“One of the practical applications [of this technique] in future is the possible observation of cells,” explains Takahashi. “The shape of a whole cell and the spatial distribution of [its] organelles could be three-dimensionally visualized at 10 nanometer resolution—to provide key insights into the organization inside cells. We hope to see this technique being used in biological and materials science in future.”

The corresponding author for this highlight is based at the SR Imaging Instrumentation Unit, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>