Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What lies beneath: mapping hidden nanostructures

13.02.2012
A new method to map nanostructures within materials may lead to biological imaging of the internal organization of cells

The ability to diagnose and predict the properties of materials is vital, particularly in the expanding field of nanotechnology. Electron and atom-probe microscopy can categorize atoms in thin sheets of material, and in small areas of thicker samples, but it has proven far more difficult to map the constituents of nanostructures inside large, thick objects. X-rays—the most common imaging tool for hard biological materials such as bones—have a limited focal-spot size, so they cannot focus on nanoscale objects.


Figure 1: Images of gold/silver nanoparticles, acquired using a combined method of x-ray ptychography and anomalous x-ray diffraction. Copyright : 2012 Yukio Takahashi

Now, Yukio Takahashi and colleagues at Osaka University, together with researchers at Nagoya University and the RIKEN SPring-8 center in Hyogo, have succeeded for the first time in producing two-dimensional images of nanostructures encased in thick materials on a large scale1. Their work was possible because they designed a new x-ray diffraction microscopy system that does not require a lens.

“The main challenges in this work were to realize x-ray diffraction microscopy with a high resolution and a large field of view, then extend it to element-specific imaging,” Takahashi explains. “We achieved this by establishing a scanning x-ray diffraction imaging technique called x-ray ptychography.”

Ptychography involves taking images of an object that overlap with one another on a series of coinciding lattice points. The researchers combined this technique with x-rays, and included a system to compensate for the drifting of optics during imaging. Takahashi and his colleagues focused the x-rays using so-called ‘Kirkpatrick–Baez mirrors’ that allowed them to collect high-quality diffraction data.
Their system monitors the changes in the diffraction of x-rays at two different energies. The degree of phase difference between the two x-ray energies changes significantly at the absorption edge of the target element. This is related to the atomic number of the element, meaning that the elements present in the material can be identified. To verify that their system works, the researchers deposited gold/silver nanoparticles around 200 nanometers in size on a silicon nitride membrane, and produced high-resolution and large-scale images of the particles. The resolutions were better than 10 nanometers (Fig. 1).

“One of the practical applications [of this technique] in future is the possible observation of cells,” explains Takahashi. “The shape of a whole cell and the spatial distribution of [its] organelles could be three-dimensionally visualized at 10 nanometer resolution—to provide key insights into the organization inside cells. We hope to see this technique being used in biological and materials science in future.”

The corresponding author for this highlight is based at the SR Imaging Instrumentation Unit, RIKEN SPring-8 Center

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Midwife and signpost for photons
11.12.2017 | Julius-Maximilians-Universität Würzburg

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>