Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New knowledge about 'flawed' diamonds could speed the development of diamond-based quantum computers

Physicists establish dynamic Jahn-Teller effect in defective diamonds

A University at Buffalo-led research team has established the presence of a dynamic Jahn-Teller effect in defective diamonds, a finding that will help advance the development of diamond-based systems in applications such as quantum information processing.

"We normally want things to be perfect, but defects are actually very important in terms of electronic applications," said Peihong Zhang, the UB associate professor of physics who led the study. "There are many proposals for the application of defective diamonds, ranging from quantum computing to biological imaging, and our research is one step toward a better understanding of these defect systems."

The research was published online Sept. 30 in Physical Review Letters:

The findings deal with diamonds whose crystal structure contains a particular defect: a nitrogen atom that sits alongside a vacant space in an otherwise perfect lattice made only of carbon.

At the point of the imperfection -- the so-called "nitrogen-vacancy center" -- a single electron can jump between different energy states. (The electron rises to a higher, "excited" energy state when it absorbs a photon and falls back to a lower energy state when it emits a photon).

Understanding how the diamond system behaves when the electron rises to an excited state called a "3E" state is critical to the success of such proposed applications as quantum computing.

The problem is that at the nitrogen-vacancy center, the 3E state has two orbital components with exactly the same energy -- a configuration that is inherently unstable.

In response, the lattice "stabilizes" by rearranging itself. Atoms near the nitrogen-vacancy center move slightly, resulting in a new geometry that has a lower energy and is more stable.

This morphing is known as the Jahn-Teller effect, and until recently, the effect's precise parameters in defective diamonds remained unknown.

Zhang and colleagues from the Rensselaer Polytechnic Institute in Troy, N.Y., are the first to crack that mystery. Using UB's supercomputing facility, the Center for Computational Research, the team conducted calculations that reveal how, exactly, the diamond lattice distorts.

Their findings align with experimental results from other research studies, and shed light on important topics such as how long an excited electron at the nitrogen-vacancy center will stay coherently at a higher energy state.

The UB-Rensselaer study was funded by the Department of Energy.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Related Stories:

Physicist Peihong Zhang Among Three UB Researchers to Receive New NSF CAREER Awards:

Charlotte Hsu | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>