Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State's fast laser research and theory building on Einsten's work by timing electrons emissions

26.05.2009
Ultrafast laser research at Kansas State University has allowed physicists to build on Nobel Prize-winning work in photo-electronics by none other than Albert Einstein.

Einstein received the Nobel Prize in 1921 for his theoretical explanation in 1905 of the so-called photo-effect -- that is, the emission of electrons from a metal surface by incident light.

In Einstein's time, laboratory light sources provided light of very low intensity in comparison with modern lasers like those at K-State. Back then, experiments could measure the energy -- or speed -- of light-emitted electrons but could not resolve their motion in time. In modern laboratories, lasers are used as light sources that provide very short and intensive flashes of light.

Uwe Thumm, K-State professor of physics, and Chang-hua Zhang, a postdoctoral research associate in physics, are theorists who have developed a model that allows them to compute not just the energy of photo-emitted electrons, but also the times after their release at which they can be detected. Within their quantum mechanical model, Thumm and Zhang found that electrons that are emitted by ultra-short laser pulses from different parts of a metal surface will arrive at an electron detector at slightly different times.

"It's a feat that would be impossible without high-intensity lasers like those at K-State's J. R. Macdonald Laboratory," Thumm said. "With the help of ultrashort laser pulses, the motion of electrons can now be followed in time. This has started an entire new area of research, called attosecond physics."

An attosecond is a billionth of a billionth of a second. It's an incredibly short time to humans -- but not to electrons, Thumm said.

"Fifty attoseconds is about the time resolution needed to resolve the motion of electrons in matter," he said.

In agreement with a recent experiment, their calculation shows that electrons of a metal surface that are near atomic nuclei are photo-emitted with a delay of about 110 attoseconds relative to another type of electron. These conduction electrons are not attached to individual atoms and enable metals to conduct electricity.

Thumm and Zhang published their work in Physical Review Letters in March. Their research was supported by the National Science Foundation and the U.S. Department of Energy.

Thumm said that Einstein's research, which laid the groundwork for their own research, is often understood as a proof for light behaving as a particle called a photon rather than as a wave. Einstein showed that only light above a certain minimal frequency -- in the blue end of the visible spectrum -- could make metals emit electrons.

"It was a celebrated model, and it's still in textbooks as an explanation that light is made up of photons," Thumm said. "You can talk to a lot of physics students who get it wrong."

While Einstein's model is not wrong, it is not a proof for the particle-character of light, Thumm said. Einstein published his model about two decades before modern quantum theory was developed. Modern quantum theory of matter predicts the emission of an electron even when light is regarded as a classical electro-magnetic wave.

Today, physicists have lasers that provide light at such high intensities that electrons can be emitted at lower frequencies, toward the red end of the visible spectrum. And today, scientists look at light as behaving both like a particle and a wave.

"There is a bit of a philosophical debate," Thumm said.

Thumm said that the new and exciting part of this research is that short pulses from ultrafast lasers like the Kansas Light Source at K-State's J.R. Macdonald Lab allow physicists to measure the timing of electrons emitting from metals, thus building on models like the one he and Zhang developed.

Researchers can use short, intense pulses of extreme ultraviolet light to get a tungsten surface to emit electrons. They can synchronize these extreme ultraviolet pulses with a delayed infrared pulse, into which the electron is emitted. Thumm said that this infrared pulse changes the energy of the emitted electrons over time and serves as a measuring stick to judge the timing of the electron emissions.

He said that it is a bit like how high-speed photography in the 19th century proved that all four of a horse's hooves leave the ground while running.

"In this case it's not the horse's hooves but the electrons that we're seeing," Thumm said. "The bigger picture is that if we resolve in time how electrons move, we can understand the timing of chemical reactions taking place. We can understand the basics of chemistry, biology and life."

While Thumm and other K-State physicists continue to delve further into attosecond research, the university will be host to the Second International Conference on Attosecond Physics from July 28 to Aug. 1, bringing physicists from around the world to the K-State campus in Manhattan.

Uwe Thumm | EurekAlert!
Further information:
http://www.ksu.edu
http://jrm.phys.ksu.edu

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>