Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jupiter pummeled, leaving bruise the size of the Pacific Ocean

24.07.2009
Probable impact scar appears on 15 anniversary of comet Shoemaker-Levy 9 impact

Something slammed into Jupiter in the last few days, creating a dark bruise about the size of the Pacific Ocean.

The bruise was noticed by an amateur astronomer on Sunday, July 19. University of California, Berkeley, astronomer Paul Kalas took advantage of previously scheduled observing time on the Keck II telescope in Hawaii to image the blemish in the early morning hours of Monday, July 20. The near infrared image showed a bright spot in Jupiter's southern hemisphere, where the impact had propelled reflective particles high into the relatively clear stratosphere.

In visible light, the bruise appears dark against the bright surface of Jupiter.

The observation made with the Keck II telescope marks only the second time astronomers have seen the results of an impact on the planet. The first collision occurred exactly 15 years ago, between July 16 and 22, 1994, when more than 20 fragments of comet Shoemaker-Levy 9 collided with Jupiter.

The Shoemaker-Levy 9 (SL9) impact events were well-studied by astronomers, including several from UC Berkeley, and many theories were subsequently developed based on the observations.

"Now we have a chance to test these ideas on a brand new impact event," said Kalas, who observed the aftermath of the new impact with the help of Michael Fitzgerald of Lawrence Livermore National Lab and UCLA.

The astronomers decided to observe Jupiter after hearing that Australian amateur astronomer Anthony Wesley had discovered the planet's new scar. They read about it on the blog of UC Berkeley and SETI Institute astronomer Franck Marchis (http://www.cosmicdiary.org/blogs/nasa/franck_marchis/). Kalas, who is in Greece, consulted intensely with Fitzgerald and Marchis on how best to observe the feature. Fitzgerald then performed the observations with the help of Keck Observatory astronomer Al Conrad.

"The analysis of the shape and brightness of the feature will help in determining the energy and the origin of the impactor," said Marchis. "We don't see other bright features along the same latitude, so this was most likely the result of a single asteroid, not a chain of fragments like for SL9."

"The fact that (the feature) shows up so clearly means that it's associated with high-altitude aerosols, as seen in the Shoemaker-Levy impacts," said James Graham of UC Berkeley, who assisted with the new observations as well as with observations taken during the SL9 event in 1994.

Mike Wong, a UC Berkeley researcher currently on leave at the Space Telescope Science Institute in Baltimore, used the observations to calculate that the scar is near the southern pole of Jupiter (305 W, 57 S in planetographic coordinates) and that the impact covers a 190-million-square-kilometer area as big as the Pacific Ocean. Because of the complex shape of the explosion, it is possible that tidal effects fragmented the impactor – a comet or asteroid –shortly before it collided with the planet.

The impact fell on the 15th anniversary of the SL9 impacts, but the coincidences do not end there. Kalas' original plan was to search for a previously detected, Jupiter-like planet around the star Fomalhaut. The star is located roughly 25 light years from Earth in the direction of the constellation Piscis Austrinus. Kalas showed previously that the planet, dubbed Fomalhaut b, is bright, and one explanation for that brightness is that it is suffering impacts just like Jupiter, he said.

Later this week, astronomers from UC Berkeley and around the world plan to conduct high-resolution visible and ultraviolet observations of the impact site using the Hubble Space Telescope's brand new Wide Field Camera 3. Ground-based facilities including the W. M. Keck telescope will also use adaptive optics to obtain much sharper infrared images of the impact's aftermath. But the Keck images reported here will provide a crucial baseline for measuring the spread of impact-related material, Wong said. No other method exists to directly track the winds at these rarified levels of Jupiter's atmosphere.

One of those planning to observe Jupiter with Keck is UC Berkeley astronomer Imke de Pater, who was one of the leaders of the campus's SL9 observations of Jupiter in 1994. Working with Conrad and Wong, she plans to observe Jupiter on July 24 using a laser guide star with adaptive optics, analogous to observations conducted in July 2006 and May 2008.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>