Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State researchers help detect very-high-energy gamma rays from Crab pulsar

07.10.2011
Iowa State University astrophysicists are part of an international team that unexpectedly discovered very-high-energy gamma rays from the already well-known Crab pulsar star.

The team's findings are published in the Oct. 7 issue of the journal Science.

"This is the first time very-high-energy gamma rays have been detected from a pulsar - a rapidly spinning neutron star about the size of the city of Ames but with a mass greater than that of the sun," said Frank Krennrich, an Iowa State professor of physics and astronomy and a co-author of the paper.

The discovery was the work of three post-doctoral researchers – including Martin Schroedter, who left Iowa State last year for a position at the Fred Lawrence Whipple Observatory near Amado, Ariz.

The researchers' finding was a surprise, said Amanda Weinstein, an Iowa State assistant professor of physics and astronomy. Astrophysicists started looking for very-high-energy gamma rays from the Crab pulsar decades ago and had never found them with energies greater than 25 billion electron volts.

This time, using the $20 million Very Energetic Radiation Imaging Telescope Array System (VERITAS) in southern Arizona, the researchers discovered pulsed gamma rays from the Crab pulsar that exceeded energies of 100 billion electron volts.

Krennrich said such high energies can't be explained by the current understanding of pulsars.

Pulsars are compact neutron stars that spin rapidly and have a very strong magnetic field, Krennrich said. The spin and magnetism pull electrons from the star and accelerate them along magnetic field lines, creating narrow bands of "curvature radiation."

Krennrich and Weinstein said curvature radiation doesn't explain the very-high-energy gamma rays reported in the Science paper. And so astrophysicists need to develop new ideas about pulsars and how they create gamma rays.

Gamma rays are a form of high-energy electromagnetic radiation. They have energies of one million to several trillion electron volts; the energy of visible light is one electron volt.

Even with their very high energies, gamma rays can't penetrate the earth's atmosphere. When they hit the atmosphere, they create showers of electrons and positrons that create a blue light known as Cerenkov radiation. Those showers move very fast. And they're not very bright.

And so it takes a very sensitive instrument such as VERITAS to detect those rays. VERITAS features four, 12-meter reflector dishes covered with 350 mirrors. All those mirrors direct light into cameras mounted in front of each dish. Each camera is about 7 feet across and contains 499 tube-shaped photon detectors or pixels.

All those detectors were built in a laboratory on the fourth floor of Iowa State's Zaffarano Physics Addition. The assembly took about $1 million and a lot of work by a team of Iowa State researchers.

Weinstein, then working as a post-doctoral researcher at the University of California, Los Angeles, helped design and build the VERITAS array trigger. The trigger is an electronics system that works in real-time to determine which telescope observations contain useful data that should be recorded for analysis.

Researchers believe a better understanding of gamma rays could help them explore distant regions of space, help them look for evidence of dark matter, determine how much electromagnetic radiation the universe has produced, answer questions about the formation of stars and help explain the origins of the most energetic radiation in the universe.

The three lead authors of the Science paper are Schroedter; Andrew McCann of McGill University in Montreal; and Nepomuk Otte of the University of California, Santa Cruz and now at the Georgia Institute of Technology in Atlanta. Iowa State co-authors are Krennrich; Weinstein; Matthew Orr, a post-doctoral research associate in physics and astronomy; Arun Madhavan, a doctoral student in physics and astronomy; and Asif Imran, a former Iowa State doctoral student who's now at Los Alamos National Laboratory in New Mexico.

The research project was supported by the U.S. Department of Energy Office of Science, the National Science Foundation, the Smithsonian Institution, the National Sciences and Energy Research Council of Canada, Science Foundation Ireland, and the Science and Technology Facilities Council in the United Kingdom.

There's more than a gamma-ray discovery in this particular research paper, Weinstein said. There's also a lesson about scientific discovery.

"Because this was something people didn't expect, it took courage to pursue this study," she said. "The lesson is you keep making your instruments better and you keep looking."

Contacts:

Frank Krennrich
Physics and Astronomy
515-294-3736
krennich@iastate.edu
Amanda Weinstein
Physics and Astronomy
515-294-6448
amandajw@iastate.edu
Mike Krapfl
News Service
515-294-4917
mkrapfl@iastate.edu

Frank Krennrich | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>