Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar winds buffeting our solar system have shifted direction

06.09.2013
Scientists, including University of New Hampshire astrophysicists involved in NASA's Interstellar Boundary Explorer (IBEX) mission, have discovered that the particles streaming into the solar system from interstellar space have likely changed direction over the last 40 years.

The finding helps scientists map our location within the Milky Way galaxy and is crucial for understanding our place in the cosmos through the vast sweep of time—where we've come from, where we're currently located, and where we're going in our journey through the galaxy.


This image shows the nearest interstellar gas clouds around the solar system, including the Local Interstellar Cloud (LIC) and G Cloud, along with positions of neighboring stars in the plane of our Milky Way galaxy. The arrow shows the sun's motion relative to neighboring stars. Image courtesy of P.C. Frisch, University of Chicago

Additionally, scientists now gain deeper insight into the dynamic nature of the interstellar winds, which has major implications on the size, structure, and nature of our sun's heliosphere—the gigantic bubble that surrounds our solar system and helps shield us from dangerous incoming galactic radiation.

The results, based on data spanning four decades from 11 different spacecraft, including IBEX, were published in the journal Science September 5, 2013.

"It was very surprising to find that changes in the interstellar flow show up on such short time scales because interstellar clouds are astronomically large," says Eberhard Möbius, UNH principal scientist for the IBEX mission and co-author on the Science paper. Adds Möbius, "However, this finding may teach us about the dynamics at the edges of these clouds—while clouds in the sky may drift along slowly, the edges often are quite fuzzy and dynamic. What we see could be the expression of such behavior."

The data from the IBEX spacecraft show that neutral interstellar atoms are flowing into the solar system from a different direction than previously observed. Interstellar atoms flow past the Earth as the interstellar cloud surrounding the solar system passes the sun at 23 kilometers per second (50,000 miles per hour).

The latest IBEX measurements of the interstellar wind direction differed from those made by the Ulysses spacecraft in the 1990s. That difference led the IBEX team to compare the IBEX measurements to data gathered by 11 spacecraft between 1972 and 2011. The scientists wanted to gather as much evidence from as many sources as possible to determine whether the newer instruments simply provided more accurate results, or whether the wind direction itself changed over the years.

The various sets of observations relied on three different methods to measure the incoming interstellar wind. IBEX and Ulysses directly measured neutral helium atoms as they coursed through the inner solar system. IBEX's measurements are close to Earth, while Ulysses' measurements were taken between 1.3 and 2 times further from the sun.

In the final analysis, the direction of the wind obtained most recently by IBEX data differs from the direction obtained from the earlier measurements, which strongly suggests the wind itself has changed over time.

"Prior to this study, we were struggling to understand why our current measurements from IBEX differed from those of the past," says co-author Nathan Schwadron, lead scientist for the IBEX Science Operations Center at UNH. "We are finally able to resolve why these fundamental measurements have been changing with time: we are moving through a changing interstellar medium."

The paper, "Decades-long Changes of the Interstellar Wind Through our Solar System," includes IBEX team members from the University of Chicago, the Space Research Centre of the Polish Academy of Sciences, the Southwest Research Institute, the University of Texas in San Antonio, UNH, Dartmouth College, Central Arizona College, the University of California at Berkeley, and NASA's Jet Propulsion Laboratory.

IBEX is part of NASA's series of low-cost, rapidly developed Small Explorer space missions. Southwest Research Institute in San Antonio leads the IBEX mission with teams of national and international partners. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the Explorers Program for NASA's Science Mission Directorate in Washington.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

David Sims | EurekAlert!
Further information:
http://www.unh.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>