Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Travelers of the Future May be Helped by MU Physicist’s Calculations

10.10.2012
University of Missouri’s Sergei Kopeikin may have solved the Pioneer anomaly

Former President Bill Clinton recently expressed his support for interstellar travel at the 100 Year Spaceship Symposium, an international event advocating for human expansion into other star systems. Interstellar travel will depend upon extremely precise measurements of every factor involved in the mission.

The knowledge of those factors may be improved by the solution a University of Missouri researcher found to a puzzle that has stumped astrophysicists for decades.

“The Pioneer spacecraft, two probes launched into space in the early 70s, seemed to violate the Newtonian law of gravity by decelerating anomalously as they traveled, but there was nothing in physics to explain why this happened,” said Sergei Kopeikin, professor of physics and astronomy in MU’s College of Arts and Science. “My study suggests that this so-called Pioneer anomaly was not anything strange. The confusion can be explained by the effect of the expansion of the universe on the movement of photons that make up light and radio waves.”

Beams of radio waves were sent to and bounced off the Pioneer spacecraft to measure the probes’ movement. The time it took for the photons to complete a round trip was used to calculate the spacecrafts’ distance and speed. Kopeikin’s research suggests that the photons move faster than expected from the Newtonian theory thus causing the appearance of deceleration, though the craft were actually traveling at the correct speed predicted by the theory. The universe is constantly expanding and this alters the Earth-based observations of the photons bouncing off the spacecraft, causing the Pioneer probes to appear to slow down.

“Previous research has focused on mechanical explanations for the Pioneer anomaly, such as the recoil of heat from the craft’s electrical generators pushing the craft backwards,” Kopeikin said. “However that only explains 15 to 20 percent of the observed deceleration, whereas it is the equation for photons that explains the remaining 80-85 percent.”

Physicists must be careful when dealing with propagation of light in the presence of the expansion of space, noted Kopeikin, since it is affected by forces that are irrelevant in other equations. For example, the expansion of the universe affects photons, but doesn’t influence the motion of planets and electrons in atoms.

“Having accurate measurements of the physical parameters of the universe help us form a basis to make plans for interstellar exploration,” Kopeikin said. “Discerning the effect of the expansion of the universe on light is important to the fundamental understanding of space and time. The present study is part of a larger on-going research project that may influence the future of physics.”

The study “Celestial ephemerides in an expanding universe” was published in the journal Physical Review D.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu
http://munews.missouri.edu/news-releases/2012/1009-interstellar-travelers-of-the-future-may-be-helped-by-mu-physicist%E2%80%99s-calcula

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>