Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Travelers of the Future May be Helped by MU Physicist’s Calculations

10.10.2012
University of Missouri’s Sergei Kopeikin may have solved the Pioneer anomaly

Former President Bill Clinton recently expressed his support for interstellar travel at the 100 Year Spaceship Symposium, an international event advocating for human expansion into other star systems. Interstellar travel will depend upon extremely precise measurements of every factor involved in the mission.

The knowledge of those factors may be improved by the solution a University of Missouri researcher found to a puzzle that has stumped astrophysicists for decades.

“The Pioneer spacecraft, two probes launched into space in the early 70s, seemed to violate the Newtonian law of gravity by decelerating anomalously as they traveled, but there was nothing in physics to explain why this happened,” said Sergei Kopeikin, professor of physics and astronomy in MU’s College of Arts and Science. “My study suggests that this so-called Pioneer anomaly was not anything strange. The confusion can be explained by the effect of the expansion of the universe on the movement of photons that make up light and radio waves.”

Beams of radio waves were sent to and bounced off the Pioneer spacecraft to measure the probes’ movement. The time it took for the photons to complete a round trip was used to calculate the spacecrafts’ distance and speed. Kopeikin’s research suggests that the photons move faster than expected from the Newtonian theory thus causing the appearance of deceleration, though the craft were actually traveling at the correct speed predicted by the theory. The universe is constantly expanding and this alters the Earth-based observations of the photons bouncing off the spacecraft, causing the Pioneer probes to appear to slow down.

“Previous research has focused on mechanical explanations for the Pioneer anomaly, such as the recoil of heat from the craft’s electrical generators pushing the craft backwards,” Kopeikin said. “However that only explains 15 to 20 percent of the observed deceleration, whereas it is the equation for photons that explains the remaining 80-85 percent.”

Physicists must be careful when dealing with propagation of light in the presence of the expansion of space, noted Kopeikin, since it is affected by forces that are irrelevant in other equations. For example, the expansion of the universe affects photons, but doesn’t influence the motion of planets and electrons in atoms.

“Having accurate measurements of the physical parameters of the universe help us form a basis to make plans for interstellar exploration,” Kopeikin said. “Discerning the effect of the expansion of the universe on light is important to the fundamental understanding of space and time. The present study is part of a larger on-going research project that may influence the future of physics.”

The study “Celestial ephemerides in an expanding universe” was published in the journal Physical Review D.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu
http://munews.missouri.edu/news-releases/2012/1009-interstellar-travelers-of-the-future-may-be-helped-by-mu-physicist%E2%80%99s-calcula

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>