Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interstellar Travelers of the Future May be Helped by MU Physicist’s Calculations

10.10.2012
University of Missouri’s Sergei Kopeikin may have solved the Pioneer anomaly

Former President Bill Clinton recently expressed his support for interstellar travel at the 100 Year Spaceship Symposium, an international event advocating for human expansion into other star systems. Interstellar travel will depend upon extremely precise measurements of every factor involved in the mission.

The knowledge of those factors may be improved by the solution a University of Missouri researcher found to a puzzle that has stumped astrophysicists for decades.

“The Pioneer spacecraft, two probes launched into space in the early 70s, seemed to violate the Newtonian law of gravity by decelerating anomalously as they traveled, but there was nothing in physics to explain why this happened,” said Sergei Kopeikin, professor of physics and astronomy in MU’s College of Arts and Science. “My study suggests that this so-called Pioneer anomaly was not anything strange. The confusion can be explained by the effect of the expansion of the universe on the movement of photons that make up light and radio waves.”

Beams of radio waves were sent to and bounced off the Pioneer spacecraft to measure the probes’ movement. The time it took for the photons to complete a round trip was used to calculate the spacecrafts’ distance and speed. Kopeikin’s research suggests that the photons move faster than expected from the Newtonian theory thus causing the appearance of deceleration, though the craft were actually traveling at the correct speed predicted by the theory. The universe is constantly expanding and this alters the Earth-based observations of the photons bouncing off the spacecraft, causing the Pioneer probes to appear to slow down.

“Previous research has focused on mechanical explanations for the Pioneer anomaly, such as the recoil of heat from the craft’s electrical generators pushing the craft backwards,” Kopeikin said. “However that only explains 15 to 20 percent of the observed deceleration, whereas it is the equation for photons that explains the remaining 80-85 percent.”

Physicists must be careful when dealing with propagation of light in the presence of the expansion of space, noted Kopeikin, since it is affected by forces that are irrelevant in other equations. For example, the expansion of the universe affects photons, but doesn’t influence the motion of planets and electrons in atoms.

“Having accurate measurements of the physical parameters of the universe help us form a basis to make plans for interstellar exploration,” Kopeikin said. “Discerning the effect of the expansion of the universe on light is important to the fundamental understanding of space and time. The present study is part of a larger on-going research project that may influence the future of physics.”

The study “Celestial ephemerides in an expanding universe” was published in the journal Physical Review D.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu
http://munews.missouri.edu/news-releases/2012/1009-interstellar-travelers-of-the-future-may-be-helped-by-mu-physicist%E2%80%99s-calcula

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>