Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team observe 'hungry twin' stars gobbling their first meals

01.02.2013
Just-forming stars, like growing babies, are always hungry and must “feed” on huge amounts of gas and dust from dense envelopes surrounding them at birth.
Now a team of astronomers including Robert Gutermuth, a University of Massachusetts Amherst expert in imaging data from the Spitzer Space Telescope, reports observing an unusual “baby” star that periodically emits infrared light bursts, suggesting it may be twins, that is, a binary star. The discovery is reported this month in Nature.

The extremely young object, dubbed LRLL 54361, is about 100,000 years old and is located about 950 light years away toward the Perseus constellation. Years of monitoring its infrared with the Spitzer instrument reveal that it becomes 10 times brighter every 25.34 days, Gutermuth and colleagues say. This periodicity suggests that a companion to the central forming star is likely inhibiting the infall of gas and dust until its closest orbital approach, when matter eventually comes crashing down onto the protostellar “twins.”

Gutermuth, who surveys star-forming molecular clouds with Spitzer to search for protostars, says, “The idea that this object is a baby binary system fits our data, so, twins fit our data. In single protostars, we would still see matter dumping onto the star non-uniformly, but never with the regularity or intensity of the bursts we observe in LRLL 54361. The 25.43-day period is consistent with the orbital period we would expect from a very close binary star.”

The protostar twins, embedded in a gas “cocoon” many times larger than our solar system, offer an unusual chance to study what looks like a developing binary star system, he adds. Because dense envelopes of gas and dust surround embryonic stars, the only detectable light to escape is at longer, infrared wavelengths. “Spitzer’s infrared camera is perfect for penetrating this cool dust to detect emission from the warm center,” says Gutermuth.

“When you have two young stars feeding from the same circumstellar disk, the gravitational influence of the secondary companion can cause hiccups, an inhibition of infalling material from the disk. But when the orbital paths approach closely, that material can rush in, triggering feeding pulses for both stars and releasing a bright burst of light. The flash moves out from the center, reflecting off the disk and cavities in the envelope like an echo reverberating out from cave walls. We’ve seen the light flashes with Spitzer and have imaged the echo-tracing cavities in its envelope with the Hubble Space Telescope.”

The light echo to which Gutermuth refers is seen in images taken at the near-infrared limit of the Hubble’s Wide Field Camera 3 instrument. The lead investigator for this work and the Spitzer study is UMass Amherst alumnus James Muzerolle, now of the Space Telescope Science Institute, Baltimore. The investigators are careful to point out that they’re not sure what is at the center of object LRLL 54361, but if it is an embryonic binary star, the prospects are exciting.

Scientists have shown that close binary low mass stars are a somewhat rare outcome of the star formation process. But understanding their formation is critical to address some of the fundamental open questions in star and planet formation, such as how protostars form, how they accumulate their mass and how planets form from their circumstellar disks, Gutermuth points out. It’s believed that most of a central star’s mass is assembled early, whereas planet formation in spinning outer gaseous disks may take several million years to complete.

Another reason this object is so interesting, he says, is that it provides a new demonstration of the impact of time-domain astronomy. “By analyzing the variability of this object’s light over time, we have obtained a unique set of constraints on its physical nature. This system offers us a rare chance to observe the evolution of the disk and envelope around a binary star in almost real time.”

“Looking ahead, we’ll characterize this system further at millimeter wavelengths with the aid of the Large Millimeter Telescope now becoming operational under a partnership between UMass Amherst and Mexico’s Instituto Nacional de Astrofísica, Óptica y Electrónica. Studying millimeter variability over time will be part of our approach.”

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu
http://www.nature.com/nature/journal/v493/n7432/full/nature11746.html

Further reports about: Amherst Space Telescope gas and dust planet formation young star

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>