Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team observe 'hungry twin' stars gobbling their first meals

01.02.2013
Just-forming stars, like growing babies, are always hungry and must “feed” on huge amounts of gas and dust from dense envelopes surrounding them at birth.
Now a team of astronomers including Robert Gutermuth, a University of Massachusetts Amherst expert in imaging data from the Spitzer Space Telescope, reports observing an unusual “baby” star that periodically emits infrared light bursts, suggesting it may be twins, that is, a binary star. The discovery is reported this month in Nature.

The extremely young object, dubbed LRLL 54361, is about 100,000 years old and is located about 950 light years away toward the Perseus constellation. Years of monitoring its infrared with the Spitzer instrument reveal that it becomes 10 times brighter every 25.34 days, Gutermuth and colleagues say. This periodicity suggests that a companion to the central forming star is likely inhibiting the infall of gas and dust until its closest orbital approach, when matter eventually comes crashing down onto the protostellar “twins.”

Gutermuth, who surveys star-forming molecular clouds with Spitzer to search for protostars, says, “The idea that this object is a baby binary system fits our data, so, twins fit our data. In single protostars, we would still see matter dumping onto the star non-uniformly, but never with the regularity or intensity of the bursts we observe in LRLL 54361. The 25.43-day period is consistent with the orbital period we would expect from a very close binary star.”

The protostar twins, embedded in a gas “cocoon” many times larger than our solar system, offer an unusual chance to study what looks like a developing binary star system, he adds. Because dense envelopes of gas and dust surround embryonic stars, the only detectable light to escape is at longer, infrared wavelengths. “Spitzer’s infrared camera is perfect for penetrating this cool dust to detect emission from the warm center,” says Gutermuth.

“When you have two young stars feeding from the same circumstellar disk, the gravitational influence of the secondary companion can cause hiccups, an inhibition of infalling material from the disk. But when the orbital paths approach closely, that material can rush in, triggering feeding pulses for both stars and releasing a bright burst of light. The flash moves out from the center, reflecting off the disk and cavities in the envelope like an echo reverberating out from cave walls. We’ve seen the light flashes with Spitzer and have imaged the echo-tracing cavities in its envelope with the Hubble Space Telescope.”

The light echo to which Gutermuth refers is seen in images taken at the near-infrared limit of the Hubble’s Wide Field Camera 3 instrument. The lead investigator for this work and the Spitzer study is UMass Amherst alumnus James Muzerolle, now of the Space Telescope Science Institute, Baltimore. The investigators are careful to point out that they’re not sure what is at the center of object LRLL 54361, but if it is an embryonic binary star, the prospects are exciting.

Scientists have shown that close binary low mass stars are a somewhat rare outcome of the star formation process. But understanding their formation is critical to address some of the fundamental open questions in star and planet formation, such as how protostars form, how they accumulate their mass and how planets form from their circumstellar disks, Gutermuth points out. It’s believed that most of a central star’s mass is assembled early, whereas planet formation in spinning outer gaseous disks may take several million years to complete.

Another reason this object is so interesting, he says, is that it provides a new demonstration of the impact of time-domain astronomy. “By analyzing the variability of this object’s light over time, we have obtained a unique set of constraints on its physical nature. This system offers us a rare chance to observe the evolution of the disk and envelope around a binary star in almost real time.”

“Looking ahead, we’ll characterize this system further at millimeter wavelengths with the aid of the Large Millimeter Telescope now becoming operational under a partnership between UMass Amherst and Mexico’s Instituto Nacional de Astrofísica, Óptica y Electrónica. Studying millimeter variability over time will be part of our approach.”

Janet Lathrop | EurekAlert!
Further information:
http://www.umass.edu
http://www.nature.com/nature/journal/v493/n7432/full/nature11746.html

Further reports about: Amherst Space Telescope gas and dust planet formation young star

More articles from Physics and Astronomy:

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

nachricht Magnetic moment of a single antiproton determined with greatest precision ever
19.01.2017 | Johannes Gutenberg-Universität Mainz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>