Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the 'hidden' galaxies of the universe

15.06.2011
A unique example of some of the lowest surface brightness galaxies in the universe have been found by an international team of astronomers lead by the Niels Bohr Institute.

The galaxy has lower amounts of heavier elements than other known galaxies of this type. The discovery means that small low surface brightness galaxies may have more in common with the first galaxies formed shortly after the Big Bang than previously thought. The results have been published in Monthly Notices of the Royal Astronomical Society.


The galaxy ESO 546G-34 is small faint and unevolved low surface brightness galaxy of dwarf-type, which makes it somewhat similar to the Small Magellanic Cloud (companion galaxy to the Milky Way) in appearance. ESO 546G-34 has an extremely low abundance of heavier elements and contains at least 50 percent gas, which also makes it similar to the small galaxies that were abundant in the early universe. Credit: ESO

As the name implies, the galaxies are faint and therefore difficult to find and challenging to observe. The galaxy called ESO 546-G34 is a nearly 20 year old observation that no one had previously taken much notice of. The observation has now been analysed using new methods and it is only now that astronomers have realised how special it is.

"The galaxy gives us an idea of how the galaxies must have looked before star formation really got going", explains Lars Mattsson, an astrophysicist at the Dark Cosmology Centre at the Niels Bohr Institute, University of Copenhagen. The discovery was made in collaboration with astronomers at Uppsala University and the Astronomical Observatory in Kiev.

The evolution of galaxies

A galaxy consists of many millions or billions of stars. Stars are formed when giant gas clouds condense and form a ball of glowing gas – a star. A star produces energy through the fusion of hydrogen into helium, which fuses into carbon and oxygen and further into heavier and heavier elements. The process of conversion from gases to heavier elements takes anywhere from hundreds of thousands of years to billions of years.

Most of the known galaxies that have only formed small amounts of the heavy elements are young galaxies that are undergoing gigantic outbursts of star formation. This makes them incredibly bright and easier to observe. One type of galaxy with bursts of star formation is called blue compact galaxies, as newly formed stars emit a bluish light.

'Unevolved' dwarf galaxy

The galaxy that has been observed is small and contains only extremely small amounts of the heavier elements. That it consists mostly of the gases hydrogen and helium and is so faint means that it has only just begun to form stars.

"Our analysis shows that while a large, mature galaxy like our own galaxy, the Milky Way, is comprised of around 15-20 percent gas, this faint little galaxy is comprised of up to 50 percent gas and is very poor in heavier elements. This means that it is very unevolved", explains Lars Mattsson.

The theory is that the very small faint galaxies collide with each other and the greater concentration of gas material and dynamical disturbance boosts star formation and thereby form the larger blue, compact galaxies.

"ESO 546-G34 is a left over dwarf galaxy that doesn't seem to have collided with other galaxies. This gives us unique insight into how the earliest galaxies in the universe may have looked", explains Lars Mattsson.

http://arxiv.org/abs/1105.3650

Contact: Lars Mattsson, astrophysicist, Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, 3532-5927, mattsson@dark-cosmology.dk

Nils Bergvall, Professor, Uppsala University, 018 471 59 75, nils.bergvall@fysast.uu.se

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

Further reports about: 546-G34 Big Bang Cosmology Dark Quencher ESO Milky Way star formation

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>