Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

India Joins Thirty Meter Telescope Project

28.06.2010
The Minister of Science and Technology of India, Mr. Prithviraj Chavan, announced today the decision of India to join the Thirty Meter Telescope Project (TMT) as an Observer. TMT is the next-generation astronomical observatory that is scheduled to begin scientific operations in 2018 on Mauna Kea, Hawaii.

Observer status is the first step in becoming a full partner in TMT and participating in the engineering development and scientific use of what will be the world’s most advanced and capable astronomical observatory.

“India is well recognized and respected as one of the top-ranking countries in the field of basic research,” said Henry Yang, chairman of the TMT board and Chancellor of the University of California, Santa Barbara. “As part of TMT, India will be an integral part of the next generation of astronomical research. We welcome their collaboration on this exciting project.”

"The government and people of India recognize the importance of embarking on world-class, international science collaborations," said Thirumalachari Ramasami, Secretary of the Department of Science and Technology, during a ceremony in Washington. “We believe the Thirty Meter Telescope will enable us to continue and expand our role as an international leader in technology development and fundamental research.”

“The TMT and its partners are extremely pleased that India has selected TMT as their next-generation astronomical research project,” said Edward Stone vice chair of the TMT board and Caltech’s Morrisroe Professor of Physics. “As an Observer, we can now begin exploring the specific areas where India can contribute to the project and look forward to their becoming a full partner with a formal agreement and commitment for funding.”

“We look forward to working with India on the international Thirty Meter Telescope Project,” said Professor Ray Carlberg, the Canadian Large Optical Telescope project director and a TMT board member. “By broadening the TMT partnership, we bring greater expertise and the potential for additional government endorsement to the table, which will certainly benefit the entire project.”

The TMT project plans to begin work on-site late next year and achieve first light in 2018, at which time it will be the first of the next generation of ground-based optical observatories. This revolutionary telescope will integrate the latest innovations in precision control, segmented mirror design, and adaptive optics to correct for the blurring effect of Earth's atmosphere.

Building on the success of the twin Keck telescopes, the core technology of TMT will be a 30-meter segmented primary mirror. This will give TMT nine times the collecting area of today's largest optical telescopes and three times sharper images.

The TMT has begun full-scale polishing of the 1.4-meter mirror blanks that will make up the primary mirror. TMT also has developed many of the essential prototype components for the telescope, including key adaptive optics technologies and the support and control elements for the 492 mirror segments.

The TMT project has completed its $77 million design development phase with primary financial support of $50 million from the Gordon and Betty Moore Foundation and $22 million from Canada. The project has now entered the early construction phase thanks to an additional $200 million pledge from the Gordon and Betty Moore Foundation. Caltech and the University of California have agreed to raise matching funds of $50 million to bring the construction total to $300 million, and the Canadian partners propose to supply the enclosure, the telescope structure, and the first light adaptive optics.

The TMT project is an international partnership among the California Institute of Technology, the University of California, and the Association of Canadian Universities for Research in Astronomy. The National Astronomical Observatory of Japan (NAOJ) joined TMT as a Collaborating Institution in 2008. The National Astronomical Observatories of the Chinese Academy of Sciences joined TMT as an Observer in 2009.

Artist renderings of the Thirty Meter Telescope are here:
http://www.tmt.org/sites/default/files/images/gallery/silver%20dome.jpg
http://www.tmt.org/sites/default/files/images/gallery/tmt-2009-rev3.jpg

Charles Blue | Newswise Science News
Further information:
http://www.tmt.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>