Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the Physics of Grocery Store Display Cases to Save Energy

14.10.2011
Shoppers don’t usually give a second thought as they reach into a cooler to grab milk, cheese or prepackaged lunches.

Open-front refrigerated display cases, which make up roughly 60 percent of the refrigerated cases in grocery stores and supermarkets, provide quick access to chilled products such as dairy, meat, fish and produce. While they are popular with shoppers and grocery stores, they’re less popular with electric utilities and others concerned with energy efficiency.

Engineers at the University of Washington and Kettering University are working to cut the amount of energy used by these coolers, while enhancing product safety and quality. Results published this month in the journal Applied Thermal Engineering show that tweaking the physics can reduce the energy used for refrigeration by as much as 15 percent. Lead author of the article is Mazyar Amin, a former UW doctoral student now doing postdoctoral research at Missouri’s Saint Louis University.

Designing grocery display cases is not rocket science, but it has a lot in common with aeronautical engineering.

Refrigerated display cases shoot jets of air across their front openings, creating an invisible shield that aims to keep cold air in and warm air out.

Current technology does this with limited success.

“Most of the energy these cases use goes into cooling infiltrated air,” explains Dana Dabiri, a UW associate professor of aeronautics and astronautics. “Some energy goes to extract the heat from lighting and fan motors, some goes to remove the heat gain from radiation and conduction, but 75 percent of the cooling load is attributed to infiltration of warm and moist air from the surrounding environment.”

Open-air coolers are increasingly popular compared to other options. Refrigerated cases with doors are good at keeping cold air in, but they fog up when opened and can frustrate shoppers who want to look at more than one product while making a choice. Another design is to hang sheets of clear plastic in front of the opening, but some see this as tacky. Refrigerated bins that are open on top waste less energy because the cold air is heavier, and tends to stay inside the case. The big energy hog, and the focus of the UW research, are open-air vertical shelves.

The team includes principal investigator Homayun Navaz, a professor of mechanical engineering at Kettering who specializes in computational fluid dynamics and fluid flow simulations. Dabiri specializes in experimental work to measure and visualize fluid flows. Together they have directed five years of research in a cavernous lab on the Kettering campus in Flint, Mich.

There, researchers built a modular mock display case and an air curtain simulator to test various designs. They measured how much air was infiltrated for various air curtain speeds, angles, and other factors to minimize the amount of warm, moist air entering the chilled compartment of the case.

“One approach is to ask, ‘What are the optimal parameters so I can get the most efficient air curtain?’ and then start building those,” Dabiri said. “But instead of implementing costly redesigns for existing display cases, the question became, ‘What minimal changes can I do to improve the energy efficiency of the existing units?’”

The new paper establishes key variables that strongly affect the amount of warm air penetrating the air curtain. Results show that the most important factors are the angle between the case’s discharge and return air grilles, and jet’s exit Reynolds number, a figure that depends on the air speed and density, and the jet's turbulence intensity.

Combining experimental results and mathematical models, the team developed a tool that lets manufacturers optimize their particular design. Researchers collaborated with a leading display-case manufacturer to retrofit a proof-of-concept case. Tests showed the retrofit was a cost-effective way to get a 10 percent reduction in infiltration of warm air. (Calculations for other display designs show potential savings of up to 15 percent.)

Navaz’s team has now established a company in Flint, Michigan, that provides technical tools and training to help display-case manufacturers improve their products’ energy efficiency. “There’s definitely room for improvement in these display cases,” Dabiri said. “We’ve shown that we can get 10 to 15 percent improvement, which is definitely a tangible impact. In this whole push for energy efficiency, anything you can do is a help.”

An industry-wide implementation of the findings across the U.S. would save roughly $100 million in electricity costs each year.

Southern California Edison Co. funded the initial tests. Further research funding was from the U.S. Department of Energy, and the California Energy Commission’s Public Interest Energy Research program.

For more information, contact Dabiri at 206-543-6067 or dabiri@aa.washington.edu.

Dabiri | Newswise Science News
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>