Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Improvements in MRIs, other image-detection applications on the horizon


Sandia, Rice University, Tokyo Institute of Technology developing terahertz detectors with carbon nanotubes

Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

Researchers at Sandia National Laboratories, Rice University and the Tokyo Institute of Technology developed a terahertz detector using several nanoscopic-sized tubes, creating a macroscopic thin film that contains a mix of metallic and semiconducting carbon nanotubes.

Credit: Dino Vournas, Sandia National Laboratories

A paper in Nano Letters journal, "Carbon Nanotube Terahertz Detector," debuted in the May 29 edition of the publication's "Just Accepted Manuscripts" section. The paper describes a technique that uses carbon nanotubes to detect light in the terahertz frequency range without cooling.

Historically, the terahertz frequency range — which falls between the more conventional ranges used for electronics on one end and optics on another — has presented great promise along with vexing challenges for researchers, said Sandia's François Léonard, one of the authors.

"The photonic energy in the terahertz range is much smaller than for visible light, and we simply don't have a lot of materials to absorb that light efficiently and convert it into an electronic signal," said Léonard. "So we need to look for other approaches."

Terahertz technology offers hope in medicine and other applications

Researchers need to solve this technical problem to take advantage of the many beneficial applications for terahertz radiation, said co-author Junichiro Kono of Rice University. Terahertz waves, for example, can easily penetrate fabric and other materials and could provide less intrusive ways for security screenings of people and cargo. Terahertz imaging could also be used in food inspection without adversely impacting food quality.

Perhaps the most exciting application offered by terahertz technology, said Kono, is as a potential replacement for magnetic resonance imaging (MRI) technology in screening for cancer and other diseases.

"The potential improvements in size, ease, cost and mobility of a terahertz-based detector are phenomenal," he said. "With this technology, you could conceivably design a hand-held terahertz detection camera that images tumors in real-time, with pinpoint accuracy. And it could be done without the intimidating nature of MRI technology."

Carbon nanotubes may help bridge the technical gap

Sandia, its collaborators and Léonard, in particular, have been studying carbon nanotubes and related nanomaterials for years. In 2008, Léonard authored The Physics of Carbon Nanotube Devices, which looks at the experimental and theoretical aspects of carbon nanotube devices.

Carbon nanotubes are long, thin cylinders composed entirely of carbon atoms. While their diameters are in the 1- to 10-nanometer range, they can be up to several centimeters long. The carbon-carbon bond is very strong, so it resists any kind of deformation.

The scientific community has long been interested in the terahertz properties of carbon nanotubes, said Léonard, but virtually all of the research to date has been theoretical or computer-model based. A handful of papers have investigated terahertz sensing using carbon nanotubes, but those have focused mainly on the use of a single or single bundle of nanotubes.

The problem, Léonard said, is that terahertz radiation typically requires an antenna to achieve coupling into a single nanotube due to the relatively large size of terahertz waves. The Sandia, Rice University and Tokyo Institute of Technology research team, however, found a way to create a small but visible-to-the-naked eye detector, developed by Rice researcher Robert Hauge and graduate student Xiaowei He, that uses carbon nanotube thin films without requiring an antenna. The technique is thus amenable to simple fabrication and represents one of the team's most important achievements, Léonard said.

"Carbon nanotube thin films are extremely good absorbers of electromagnetic light," he explained. In the terahertz range, it turns out that thin films of these nanotubes will soak up all of the incoming terahertz radiation. Nanotube films have even been called "the blackest material" for their ability to absorb light effectively.

The researchers were able to wrap together several nanoscopic-sized tubes to create a macroscopic thin film that contains a mix of metallic and semiconducting carbon nanotubes.

"Trying to do that with a different kind of material would be nearly impossible, since a semiconductor and a metal couldn't coexist at the nanoscale at high density," explained Kono. "But that's what we've achieved with the carbon nanotubes."

The technique is key, he said, because it combines the superb terahertz absorption properties of the metallic nanotubes and the unique electronic properties of the semiconducting carbon nanotubes. This allows researchers to achieve a photodetector that does not require power to operate, with performance comparable to existing technology.

A clear path to performance improvement

The next step for researchers, Léonard said, is to improve the design, engineering and performance of the terahertz detector.

For instance, they need to integrate an independent terahertz radiation source with the detector for applications that require a source, Léonard said. The team also needs to incorporate electronics into the system and to further improve properties of the carbon nanotube material.

"We have some very clear ideas about how we can achieve these technical goals," said Léonard, adding that new collaborations with industry or government agencies are welcome.

"Our technical accomplishments open up a new path for terahertz technology, and I am particularly proud of the multidisciplinary and collaborative nature of this work across three institutions," he said.

In addition to Sandia, Rice and Tokyo Tech, the project received contributions from researchers taking part in NanoJapan, a 12-week summer program that enables freshman and sophomore physics and engineering students from U.S. universities to complete nanoscience research internships in Japan focused on terahertz nanoscience.


Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Department of Energy's National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Mike Janes, (925) 294-2447,

Mike Janes | Eurek Alert!
Further information:

Further reports about: MRIs Nanotube Sandia Terahertz Terahertz Technology carbon nanotubes detector metallic waves

More articles from Physics and Astronomy:

nachricht Graphene microphone outperforms traditional nickel and offers ultrasonic reach
27.11.2015 | Institute of Physics

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

Two decades of training students and experts in tracking infectious disease

27.11.2015 | Life Sciences

Coming to a monitor near you: A defect-free, molecule-thick film

27.11.2015 | Materials Sciences

More VideoLinks >>>