Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New images capture 'stealth merger' of dwarf galaxies

09.02.2012
New images of a nearby dwarf galaxy have revealed a dense stream of stars in its outer regions, the remains of an even smaller companion galaxy in the process of merging with its host. The host galaxy, known as NGC 4449, is the smallest primary galaxy in which a stellar stream from an ongoing merger has been identified and studied in detail.

"This is how galaxies grow. You can see the smaller galaxy coming in and getting shredded, eventually leaving its stars scattered through the halo of the host galaxy," said Aaron Romanowsky, a research astronomer at the University of California, Santa Cruz, and coauthor of a paper on the discovery that has been accepted for publication in Astrophysical Journal Letters and is available online at arxiv.org. The study was carried out by an international team of astronomers led by David Martínez-Delgado of the Max Planck Institute for Astronomy in Heidelberg.

According to modern cosmological theory, large galaxies were built up from smaller progenitors through a hierarchical process of mergers. Astronomers can see many examples of mergers involving massive galaxies, but mergers of two dwarf galaxies have been hard to find. "We should see the same things at smaller scales, with small galaxies eating smaller ones and so on," Romanowsky said. "Now we have this beautiful image of a dwarf galaxy consuming a smaller dwarf."

NGC 4449 is located 12.5 million light-years from Earth and is a member of a group of galaxies in the constellation Canes Venatici. In size and morphology, it is very similar to one of the Milky Way's satellite galaxies, the Large Magellanic Cloud.

The stellar stream in NGC 4449 was first detected by another group of astronomers as a mysterious, faint smudge in digitized photographic plates from the Digitized Sky Survey project, and it is also visible in archival images from the Sloan Digital Sky Survey. But if it had been just a bit fainter, more diffuse, or farther from the host galaxy, it could easily have been missed. The authors of the new study called it a "stealth merger," where an infalling satellite galaxy is nearly undetectable by conventional means, yet has a substantial influence on its host galaxy.

Martínez-Delgado organized a campaign to follow up on the initial report with more detailed observations. R. Jay GaBany, a Bay Area amateur astronomer and astrophotographer with whom Martínez-Delgado has frequently collaborated, obtained exceptionally deep, wide-field images of NGC 4449 with the half-meter Black Bird Observatory telescope (located in the Sierra Nevada mountains). Those images confirmed the presence of a faint substructure in the halo of the galaxy. Romanowsky, along with UCSC graduate student Jacob Arnold, then used the 8.2-meter Subaru Telescope in Hawaii to obtain high-resolution images in which the individual stars in the stellar stream can be seen.

"I don't think I'd ever seen a picture of a galaxy merger where you can see the individual stars," Romanowsky said. "It's really an impressive image."

The new observations support the idea that the stellar haloes around many dwarf galaxies are the remnants of smaller satellites that were shredded in past merger events. The ongoing merger in NGC 4449 may also be responsible for the intense burst of star formation seen in the galaxy. "This galaxy is famous for its starburst activity, and it seems we've found the reason for that. The gravitational interaction of the incoming galaxy has probably disturbed the gas in the main galaxy and caused it to start forming stars," Romanowsky said.

The companion galaxy was also independently discovered by a team of scientists led by UCLA astronomer Michael Rich. Their study, based on images obtained by the Centurion 28-inch telescope located at the Polaris Observatory Association near Frazier Park, California, will be published in the February 9 issue of Nature.

In addition to Martínez-Delgado, Romanowsky, Arnold, and GaBany, the coauthors of the Astrophysical Journal Letters paper include Jean Brody, professor of astronomy and astrophysics at UC Santa Cruz; Francesca Annibali at the Astronomical Observatory of Bologna; Jurgen Fliri at the Observatory of Paris; Stefano Zibetti at the University of Copenhagen; Roeland van der Marel and Alessandra Aloisi at the Space Telescope Science Institute; Hans-Walter Rix and Andrea Maccio at the Max Planck Institute; Taylor Chonis at the University of Texas, Austin; Julio Carballo-Bello at the Canary Astrophysics Institute; J. Gallego-Laborda at Fosca Nit Observatory in Spain; and Michael Merrifield at the University of Nottingham, England.

This research was supported by the National Science Foundation, NASA, and the UCSC-UARC Aligned Research Program.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

nachricht Tune your radio: galaxies sing while forming stars
21.02.2017 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>