Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Cloud Heralds Fall at Titan's South Pole

12.04.2013
An ice cloud taking shape over Titan’s south pole is the latest sign that the change of seasons is setting off a cascade of radical changes in the atmosphere of Saturn's largest moon.

Made from an unknown ice, this type of cloud has long hung over Titan's north pole, where it is now fading, according to observations made by the Composite Infrared Spectrometer (CIRS) on NASA’s Cassini spacecraft.


The change of seasons on Titan is creating new cloud patterns at Titan's south pole. Here, a combination of red, green and blue images taken by the wide-angle camera on NASA's Cassini spacecraft shows a vortex over the south pole in natural color. A more recent ice cloud, detectable only at infrared wavelengths, also has formed over this pole. Credit: NASA/JPL-Caltech/Space Science Institute/GSFC

"We associate this particular kind of ice cloud with winter weather on Titan, and this is the first time we have detected it anywhere but the north pole," said the study's lead author, Donald E. Jennings, a CIRS Co-Investigator at NASA's Goddard Space Flight Center in Greenbelt, Md.

The southern ice cloud, which shows up in the far infrared part of the light spectrum, is evidence that an important pattern of global air circulation on Titan has reversed direction. When Cassini first observed the circulation pattern, warm air from the southern hemisphere was rising high in the atmosphere and got transported to the cold north pole. There, the air cooled and sank down to lower layers of the atmosphere, where it formed ice clouds. A similar pattern, called a Hadley cell, carries warm, moist air from Earth's tropics to the cooler middle latitudes.

Based on modeling, scientists had long predicted a reversal of this circulation once Titan's north pole began to warm and its south pole began to cool. The official transition from winter to spring at Titan's north pole occurred in August 2009. But because each of the moon's seasons lasts about 7-1/2 Earth years, researchers still didn't know exactly when this reversal would happen or how long it would take.

The first signs of the reversal came in data acquired in early 2012, which was shortly after the start of southern fall on Titan, when Cassini images and visual and infrared mapping spectrometer data revealed the presence of a high-altitude "haze hood" and a swirling polar vortex at the south pole. Both features have long been associated with the cold north pole. Later, Cassini scientists reported that infrared observations of Titan's winds and temperatures made by CIRS had provided definitive evidence of air sinking, rather than upwelling, at the south pole. By looking back through the data, the team narrowed down the change in circulation to within six months of the 2009 equinox.

Despite the new activity at the south pole, the southern ice cloud hadn't appeared yet. CIRS didn't detect it until about July 2012, a few months after the haze and vortex were spotted in the south, according to the study published in Astrophysical Journal Letters in December 2012.

"This lag makes sense, because first the new circulation pattern has to bring loads and loads of gases to the south pole. Then the air has to sink. The ices have to condense. And the pole has to be under enough shadow to protect the vapors that condense to form those ices," said Carrie Anderson, a CIRS team member and Cassini participating scientist at NASA Goddard.

At first blush, the southern ice cloud seems to be building rapidly. The northern ice cloud, on the other hand, was present when Cassini first arrived and has been slowly fading the entire time the spacecraft has been observing it.

So far, the identity of the ice in these clouds has eluded scientists, though they have ruled out simple chemicals, such as methane, ethane and hydrogen cyanide, that are typically associated with Titan. One possibility is that species X, as some team members call the ice, could be a mixture of organic compounds.

"What's happening at Titan's poles has some analogy to Earth and to our ozone holes," said the CIRS Principal Investigator, NASA Goddard's F. Michael Flasar. "And on Earth, the ices in the high polar clouds aren't just window dressing: They play a role in releasing the chlorine that destroys ozone. How this affects Titan chemistry is still unknown. So it's important to learn as much as we can about this phenomenon, wherever we find it."

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency, and the Italian Space Agency. The mission is managed by JPL for NASA's Science Mission Directorate, Washington. The CIRS team is based at NASA's Goddard Space Flight Center in Greenbelt, Md., where the instrument was built.

Elizabeth Zubritsky 301-614-5438
Goddard Space Flight, Center, Greenbelt, Md.
elizabeth.a.zubritsky@nasa.gov
Jia-Rui C. Cook 818-354-0850
Jet Propulsion Laboratory, Pasadena, Calif.
jccook@jpl.nasa.gov

Elizabeth Zubritsky | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/cassini/whycassini/cassini20130411.html

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>