Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble Provides New Evidence for Dark Matter Around Small Galaxies

13.03.2009
The Hubble Space Telescope has uncovered a strong new line of evidence that galaxies are embedded in halos of dark matter. Peering into the tumultuous heart of the nearby Perseus galaxy cluster, Hubble's sharp view resolved a large population of small galaxies that have remained intact while larger galaxies around them are being ripped apart by the gravitational tug of other galaxies. The dwarf elliptical galaxies' "invisible shield" is a robust halo of dark matter that keeps them intact despite a several-billion-year-long bumper-car game inside the massive galaxy cluster.

NASA's Hubble Space Telescope has uncovered a strong new line of evidence that galaxies are embedded in halos of dark matter.

Peering into the tumultuous heart of the nearby Perseus galaxy cluster, Hubble discovered a large population of small galaxies that have remained intact while larger galaxies around them are being ripped apart by the gravitational tug of other galaxies.

Dark matter is an invisible form of matter that accounts for most of the universe's mass. Astronomers have deduced the existence of dark matter by observing its gravitational influence on normal matter, consisting of stars, gas, and dust.

The Hubble images provide further evidence that the undisturbed galaxies are enshrouded by a "cushion" of dark matter, which protects them from their rough-and-tumble neighborhood.

"We were surprised to find so many dwarf galaxies in the core of this cluster that were so smooth and round and had no evidence at all of any kind of disturbance," says astronomer Christopher Conselice of the University of Nottingham, U.K., and leader of the Hubble observations. "These dwarfs are very old galaxies that have been in the cluster a long time. So if something was going to disrupt them, it would have happened by now. They must be very, very dark-matter-dominated galaxies."

The dwarf galaxies may have an even higher amount of dark matter than spiral galaxies. "With these results, we cannot say whether the dark-matter content of the dwarfs is higher than in the Milky Way Galaxy," Conselice says. "Although, the fact that spiral galaxies are destroyed in clusters, while the dwarfs are not, suggests that is indeed the case."

First proposed about 80 years ago, dark matter is thought to be the "glue" that holds galaxies together. Astronomers suggest that dark matter provides a vital "scaffolding" for the universe, forming a framework for the formation of galaxies through gravitational attraction. Previous studies with Hubble and NASA's Chandra X-ray Observatory found evidence of dark matter in entire clusters of galaxies such as the Bullet Cluster. The new Hubble observations continue the search for dark matter in individual galaxies.

Observations by Hubble's Advanced Camera for Surveys spotted 29 dwarf elliptical galaxies in the Perseus Cluster, located 250 million light-years away and one of the closest galaxy clusters to Earth. Of those galaxies, 17 are new discoveries.

Because dark matter cannot be seen, astronomers detected its presence through indirect evidence. The most common method is by measuring the velocities of individual stars or groups of stars as they move randomly in the galaxy or as they rotate around the galaxy. The Perseus Cluster is too far away for telescopes to resolve individual stars and measure their motions. So Conselice and his team derived a new technique for uncovering dark matter in these dwarf galaxies by determining the minimum mass the dwarfs must have to protect them from being disrupted by the strong, tidal pull of gravity from larger galaxies.

Studying these small galaxies in detail was possible only because of the sharpness of Hubble's Advanced Camera for Surveys. Conselice and his team first spied the galaxies with the WIYN Telescope at Kitt Peak National Observatory outside Tucson, Ariz. Those observations, Conselice says, only hinted that many of the galaxies were smooth and therefore dark-matter dominated. "Those ground-based observations could not resolve the galaxies, so we needed Hubble imaging to nail it," he says.

The Hubble results appeared in the March 1 issue of the Monthly Notices of the Royal Astronomical Society.

Other team members are Samantha J. Penny of the University of Nottingham; Sven De Rijcke of the University of Ghent in Belgium; and Enrico Held of the University of Padua in Italy.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency (ESA) and is managed by NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Md. The Space Telescope Science Institute (STScI) conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc., Washington, D.C.

STScI is an International Year of Astronomy 2009 (IYA 2009) program partner.

Donna Weaver | Newswise Science News
Further information:
http://hubblesite.org/news/2009/11
http://www.spacetelescope.org/news/html/heic0903.html

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>