Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble brings faraway comet into view

24.04.2013
Highly active ISON speeds toward Sun at 47,000 mph

The NASA Hubble Space Telescope has given astronomers their clearest view yet of Comet ISON, a newly-discovered sun grazer comet that may light up the sky later this year, or come so close to the Sun that it disintegrates. A University of Maryland-led research team is closely following ISON, which offers a rare opportunity to witness a comet's evolution as it makes its first-ever journey through the inner solar system.


This contrast-enhanced image of Comet ISON, taken by the Hubble Space Telescope on April 10, 2013, shows dust particle release on the sunward-facing side of the comet's nucleus, the small, solid body at its core. The image was taken in visible light with Hubble's Wide Field Camera 3. Blue false color was added to bring out details in the comet structure.
Credit: NASA, ESA, J.-Y. Li (Planetary Science Institute), and the Hubble Comet ISON Imaging Science Team


Comet ISON may appear brighter than the full Moon around the time it approaches the Sun Nov. 28, but it is not yet visible to the naked eye. The Hubble Space Telescope snapped this image as ISON hurtles toward the sun at about 47,000 miles per hour. The image was taken in visible light, and blue false color was added to bring out details.
Credit: NASA, ESA, J.-Y. Li (Planetary Science Institute), and the Hubble Comet ISON Imaging Science Team. This image was taken in visible light, and blue false color was added to bring out details.

Like all comets, ISON is a "dirty snowball" – a clump of frozen gases mixed with dust, formed in a distant reach of the solar system, traveling on an orbit influenced by the gravitational pull of the Sun and its planets. ISON's orbit will bring it to a perihelion, or maximum approach to the Sun, of 700,000 miles on November 28, said Maryland assistant research scientist Michael S. Kelley.

This image was made on April 10, when ISON was some 386 million miles from the Sun – slightly closer to the Sun than the planet Jupiter. Comets become more active as they near the inner solar system, where the Sun's heat evaporates their ices into jets of gases and dust. But even at this great distance ISON is already active, with a strong jet blasting dust particles off its nucleus. As these dust particles shimmer in reflected sunlight, a portion of the comet's tail becomes visible in the Hubble image.

Next week while the Hubble still has the comet in view, the Maryland team will use the space telescope to gather information about ISON's gases.

"We want to look for the ratio of the three dominant ices, water, frozen carbon monoxide, and frozen carbon dioxide, or dry ice," said Maryland astronomy Prof. Michael A'Hearn. "That can tell us the temperature at which the comet formed, and with that temperature, we can then say where in the solar system it formed."

The Maryland team will use both the Hubble Space Telescope and the instruments on the Deep Impact space craft to continue to follow ISON as it travels toward its November close up (perihelion) with the sun.

Media contact:
Heather Dewar

Heather Dewar | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>