Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hot Water in Cold Comets

13.09.2010
Comets, also named “dirty snowballs”, are largely composed of water. An international research team around Andreas Wolf, of the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany, recently succeeded deciphering an important aspect of the way by which water molecules often form in space. As a surprise, the water molecules produced under cold, dilute conditions turned out to be produced as particles as hot as 60,000 Kelvin. In their research the physicists, though, did not use a telescope, but a particle accelerator (Physical Review Letters, 3 September 2010)

In comets as well as in interstellar clouds, the precursor molecule of water is the positively charged hydronium ion H3O+. This molecular ion can be detected from earth by telescopes. In the cosmic clouds negatively charged electrons are also present, causing frequent collisions.

In those the hydronium ion converts to the neutral instable radical H3O, which rapidly decays. “For this break-up reaction, nature offers three choices”, describes Andreas Wolf: forming either H2O plus H, or OH plus H2, or OH plus two H atoms. Present research tries to determine the yields of these production channels, including that of water.

Wolf and his colleagues investigated this question by reproducing the electron attachment in the laboratory. They used the Heidelberg Test Storage Ring, a racetrack of sorts, with a 55-meter circumference, on which charged particles race around, guided by magnets.

It is into this ring that the scientists direct the hydronium ions which, more precisely, carry heavy hydrogen atoms in order to render them more suitable for the experiments performed. At one position of the ring, electrons are admitted in addition, which then proceed together with the ions over a straight length of almost two meters and then leave the racetrack again. This happens on each turn, that is several hundred thousand times per second.

In the electron bath, similar to the process in space, electrons attach to the hydronium ions, thus forming rapidly decaying neutral molecules. The fragments from this process do not carry any net electric charge. Hence, they do not feel the magnetic field keeping the ions on their circular orbits and rather continue their straight motion. At the place where they leave the racetrack, Wolf's research team has positioned a detector that records the impacting fragments. This single-particle counter has been created in collaboration with colleagues from the Weizmann Institute of Science in Rehovot, Israel.

In up to one thousand snapshots per second, the detector records the masses and the momenta of all fragments from individual molecular breakup reactions. With these data, the molecular dynamics triggered by the electron attachment and leading to the fragmentation can be reconstructed exactly.

The first important result: 16.5 per cent of all decays following the electron attachment lead to the water molecule. “This is quite a high number”, says Wolf. “Electron attachment to hydronium ions can well be the most important pathway for water production in interstellar clouds and comets.”

Most frequently, with a yield of 71 per cent, the hydronium ions in this experiment are found to break up into three fragments, namely OH and two hydrogen atoms (in their heavy-hydrogen equivalents). The researchers can now understand the reason for this behavior. Its origin is the large binding energy released by the attachment of the electron. The entire molecule feels this binding energy and starts a vibration similar to a spring one stretches and then releases. “To general surprise we found that the water molecules vibrate with about the maximum energy which they can possibly support”, says Wolf. With this, each water molecule resulting from the electron capture is close to rupture: the cause for the three-body fragmentation to become that frequent.

The high vibrational energy observed can be converted into a temperature. It results in about 60,000 Kelvin: water is created truly hot.

The new evidence has further consequences. On the one hand, it provides input for computer models which reproduce the complex chemical reaction network in interstellar clouds. On the other hand, it explains mysterious signatures found by astronomers in the infrared spectra of some comets. These signatures indicate the infrared radiation emitted by hot water molecules during stepwise “de-excitation” of strong vibrational motion. Not of the least interest are, finally, the detailed conclusions that can be drawn from the molecular breakup experiments about the electronic processes in a hydronium ion, which serve as input for quantum mechanical models of these molecules.

Original paper:

H. Buhr, J. Stützel, M. B. Mendes, O. Novotný, D. Schwalm, M. H. Berg, D. Bing, M. Grieser, O. Heber, C. Krantz, S. Menk, S. Novotny, D. A. Orlov, A. Petrignani, M. L. Rappaport, R. Repnow, D. Zajfman, and A. Wolf
Hot water molecules from dissociative recombination of D3O+ with cold electrons
Physical Review Letters 105, 103202 (2010)
Contact:
Prof. Dr. Andreas Wolf
Max-Planck-Institut für Kernphysik, Heidelberg
Phone: +49 6221 516-503
e-mail: A.Wolf@mpi-hd.mpg.de
Dr. Henrik Buhr
Max-Planck-Institut für Kernphysik, Heidelberg
Phone: +49 531 5926-208
e-mail: henrik.buhr@mpi-hd.mpg.de

Dr. Bernold Feuerstein | idw
Further information:
http://link.aps.org/doi/10.1103/PhysRevLett.105.103202
http://www.mpi-hd.mpg.de/blaum/members/molecular-qd/index.en.html

More articles from Physics and Astronomy:

nachricht Observing and controlling ultrafast processes with attosecond resolution
20.02.2018 | Technische Universität München

nachricht Unconventional superconductor may be used to create quantum computers of the future
19.02.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast

20.02.2018 | Power and Electrical Engineering

Hidden talents: Converting heat into electricity with pencil and paper

20.02.2018 | Materials Sciences

Rare find from the deep sea

20.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>