Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hollow optical fibres for UV light


If you want to send light on a trip through optical fibres - with as little loss as possible, you should opt for infrared light, as is the case, for example, in the telecommunication networks worldwide.

For certain applications, such as spectroscopic investigations on ions or atoms, however, (laser) light in the ultraviolet range is required. But this type of light would quickly damage conventional optical fibres.

Microscopic image of a hollow-core optical fibre

(Photo: MPL)

Nearfield intensity profiles of a fibre measured with the UV beam coming from different directions. These profiles show that the light is single-mode (figure: PTB).

Researchers from the Max Planck Institute for the Science of Light (MPL) in Erlangen/Germany and of the QUEST Institute, based at the Physikalisch-Technische Bundesanstalt (PTB), have tested a new type of optical fibre with a hollow core and have found out that this type of optical fibre was able to guide UV laser light without being damaged and with acceptable loss.

Their investigations, which they have recently published in the journal "Optics Express", are interesting for numerous applications: besides precision spectroscopy on atoms or ions and their use in optical atomic clocks or quantum computers, fluorescence microscopy in biology, the investigation of process plasmas, combustion studies on soot or the spectroscopy of greenhouse gases would be other possible fields of application.

... more about:
»MPL »PCF »PTB »QUEST »glass »ions »wavelength

Optical fibres usually have a solid glass core. This glass core is coated with an optically thinner material. The laws of physics ensure that a light beam is kept inside such a fibre thanks to total reflection and that it can be transported over long distances without significant loss.

Such optical fibres are therefore widely used worldwide to transport light of different spectral ranges - from the infrared up to the visible light range. UV light, however, has a shorter wavelength and is therefore strongly absorbed by the glass used in most types of optical fibres and the fibres are quickly damaged by UV light.

At the Max Planck Institute for the Science of Light (MPL) in Erlangen, experiments with other types of optical fibre have been carried out for a few years. Now, it has turned out that a certain type of optical fibre is particularly well-suited for UV light: a microstructured photonic crystal fibre (PCF) with a so-called "Kagome structure" - a special pattern consisting of triangles and of hexagons in a regular arrangement - and a hollow core of 20 µm in diameter.

This core ensures a single-mode guiding of the light - i.e. with a spatial intensity distribution similar to the shape of a Gaussian bell-shaped curve. The crucial question was to know whether this transport was really single-mode and damage-free, and this is what the metrological experts from the QUEST Institute at PTB had to find out. Their investigations have shown that in the case of the UV beam used, with a wavelength of 280 nm, single-mode transmission was possible and that even after more than 100 hours in operation at a power of 15 mW, no UV-induced damage could be detected.

The optical fibres have even passed a first application test: the researchers at the QUEST Institute have used them successfully for their spectroscopic investigations on trapped ions. Stabilized by the new fibre, the UV laser beam allows an improved interrogation of the ions' internal state. Besides the users of such spectroscopic methods (for example in astronomy, chemistry or fundamental research in physics), this could also be useful for researchers who are developing quantum computers, since in that field, the internal states of a particle are the new digital 0s and 1s. 

Contact at the Max Planck Institute for the Science of Light

Dr. Michael H. Frosz, Head of Fibre Fabrication, Max Planck Institute for the Science of Light,
Günther-Scharowsky-Str. 1, 91058 Erlangen/Germany,
Phone: +49 (0)9131 6877-321,

Contact at PTB

Prof. Dr. Piet O. Schmidt, QUEST Institute at PTB,
Phone: +49 (0)531 592-4700,

Original publication

F. Gebert, M. H. Frosz, T. Weiss, Y. Wan, A. Ermolov, N. Y. Joly, P. O. Schmidt, and P. St. J. Russell: Damage-free single-mode transmission of deep-UV light in hollow-core PCF. Optics Express 22, 15388 (2014)

Joint press release of the Max Planck Institute for the Science of Light, Erlangen/Germany, (MPL) and the QUEST Institute of the Physikalisch-Technische Bundesanstalt (PTB)

Piet O. Schmidt | Eurek Alert!

Further reports about: MPL PCF PTB QUEST glass ions wavelength

More articles from Physics and Astronomy:

nachricht Tracking down the 'missing' carbon from the Martian atmosphere
25.11.2015 | California Institute of Technology

nachricht Iowa State astronomers say comet fragments best explanation of mysterious dimming star
25.11.2015 | Iowa State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>