Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hide & Seek: Sterile Neutrinos Remain Elusive

02.10.2014

Daya Bay neutrino experiment publishes a new result on its first search for a "sterile" neutrino

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called sterile neutrino, a possible new type of neutrino beyond the three known neutrino "flavors," or types.


The Daya Bay Neutrino Experiment is designed to provide new understanding of neutrino oscillations that can help answer some of the most mysterious questions about the universe. Shown here are the photomultiplier tubes in the Daya Bay detectors. (Photo by Roy Kaltschmidt, Berkeley Lab)

The existence of this elusive particle, if proven, would have a profound impact on our understanding of the universe, and could impact the design of future neutrino experiments. The new results, appearing in the journal Physical Review Letters, show no evidence for sterile neutrinos in a previously unexplored mass range.

"Given that the nature of matter and in particular the property of mass is one of the fundamental questions in science, ... it is important to search for ... light neutral particles that might be partners of the active neutrinos, and may contribute to the dark matter of the universe."

There is strong theoretical motivation for sterile neutrinos.  Yet, the experimental landscape is unsettled—several experiments have hinted that sterile neutrinos may exist, but the others yielded null results. Having amassed one of the largest samples of neutrinos in the world, the Daya Bay Experiment is poised to shed light on the existence of sterile neutrinos. 

The Daya Bay Experiment is situated close to the Daya Bay and Ling Ao nuclear power plants in China, 55 kilometers northeast of Hong Kong. These reactors produce a steady flux of antineutrinos that the Daya Bay Collaboration scientists use for research at detectors located at varying distances from the reactors. The collaboration includes more than 200 scientists from six regions and countries.

The Daya Bay experiment began its operation on December 24, 2011. Soon after, in March 2012, the collaboration announced its first results: the observation of a new type of neutrino oscillation—evidence that these particles mix and change flavors from one type to others—and a precise determination of a neutrino "mixing angle," called θ13, which is a definitive measure of the mixing of at least three mass states of neutrinos.

The fact that neutrinos have mass at all is a relatively new discovery, as is the observation at Daya Bay that the electron neutrino is a mixture of at least three mass states.  While scientists don't know the exact values of the neutrino masses, they are able to measure the differences between them, or "mass splittings." They also know that these particles are dramatically less massive than the well-known electron, though both are members of the family of particles called "leptons." 

These unexpected observations have led to the possibility that the electrically neutral, almost undetectable neutrino could be a special type of matter and a very important component of the mass of the universe. Given that the nature of matter and in particular the property of mass is one of the fundamental questions in science, these new revelations about the neutrino make it clear that it is important to search for other light neutral particles that might be partners of the active neutrinos, and may contribute to the dark matter of the universe.

Search for a light sterile neutrino

The new Daya Bay paper describes the search for such a light neutral particle, the "sterile neutrino," by looking for evidence that it mixes with the three known neutrino types—electron, muon, and tau. If, like the known flavors, the sterile neutrino also exists as a mixture of different masses, it would lead to mixing of neutrinos from known flavors to the sterile flavor, thus giving scientists proof of its existence. That proof would show up as a disappearance of neutrinos of known flavors.

Measuring disappearing neutrinos isn't as strange as it seems. In fact that's how Daya Bay scientists detect neutrino oscillations. The scientists count how many of the millions of quadrillions of electron antineutrinos produced every second by the six China General Nuclear Power Group reactors are captured by the detectors located in three experimental halls built at varying distances from the reactors. The detectors are only sensitive to electron antineutrinos. Calculations based on the number that disappear along the way to the farthest reactor give them information about how many have changed flavors. 

The rate at which they transform is the basis for measuring the mixing angles (for example, θ13), and the mass splitting is determined by how the rate of transformation depends on the neutrino energy and the distance between the reactor and the detector. 

That distance is also referred to as the "baseline." With six detectors strategically positioned at three separate locations to catch antineutrinos generated from the three pairs of reactors, Daya Bay provides a unique opportunity to search for a light sterile neutrino with baselines ranging from 360 meters to 1.8 kilometers.

Daya Bay performed its first search for a light sterile neutrino using the energy dependence of detected electron antineutrinos from the reactors. Within the searched mass range for a fourth possible mass state, Daya Bay found no evidence for the existence of a sterile neutrino.

This data represents the best world limit on sterile neutrinos over a wide range of masses and so far supports the standard three-flavor neutrino picture. Given the importance of clarifying the existence of the sterile neutrino, there are continuous quests by many scientists and experiments. The Daya Bay's new result remarkably narrowed down the unexplored area.  

Contact Information

Jun Cao, co-spokesperson, IHEP, +86-10-88235808, caoj@ihep.ac.cn

Kam-Biu Luk, co-spokesperson, Lawrence Berkeley National Laboratory and UC Berkeley, 510-486-7054, 510-642-8162, k_luk@lbl.gov

The collaborating institutions of the Daya Bay Reactor Neutrino Experiment are Beijing Normal University, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, California Institute of Technology, Charles University in Prague, Chengdu University of Technology, China General Nuclear Power Group, China Institute of Atomic Energy, Chinese University of Hong Kong, Dongguan University of Technology, East China University of Science and Technology, Joint Institute for Nuclear Research, University of Hong Kong, Institute of High Energy Physics, Illinois Institute of Technology, Iowa State University, DOE's Lawrence Berkeley National Laboratory, Nanjing University, Nankai University, National Chiao-Tung University, National Taiwan University, National United University, National University of Defense Technology, North China Electric Power University, Princeton University, Pontifical Catholic University of Chile, Rensselaer Polytechnic Institute, Shandong University, Shanghai Jiao Tong University, Shenzhen University, Siena College, Temple University, Tsinghua University, University of California at Berkeley, University of Cincinnati, University of Houston, University of Defense Technology, University of Illinois at Urbana-Champaign, University of Science and Technology of China, Virginia Polytechnic Institute and State University, University of Wisconsin-Madison, College of William and Mary, Xi'an Jiao Tong University, Yale University, and Sun Yat-Sen (Zhongshan) University.

For more information, visit http://dayabay.ihep.ac.cn/ 

Brookhaven Lab's role in the Daya Bay experiment is supported by the DOE Office of Science (HEP). A complete list of funding agencies for the experiment can be found in the published paper.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom, follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab, or find us on Facebook, http://www.facebook.com/BrookhavenLab/

Karen McNulty Walsh | Eurek Alert!
Further information:
http://www.bnl.gov/newsroom/news.php?a=11664

Further reports about: Laboratory Neutrino Neutrinos Sterile Neutrinos antineutrinos mass matter sterile

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>