Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hall effect at the speed of light: How can you demonstrate relativistic effects with your mobile phone?

21.05.2012
Saitama, Japan, 20 May 2012 - The relativistic Hall effect describing objects rotating at speeds comparable with the speed of light has now been reported.
PRESS RELEASE
Source: Franco Nori, RIKEN, Japan.
The work by Konstantin Bliokh and Franco Nori at RIKEN in Japan, NAS in Ukraine, and the University of Michigan in the US sheds light on aspects of fundamental physics, and you can demonstrate some aspects of this with your mobile phone.

As any cameraman knows, recording a fast rotating object such as a fan using a "rolling shutter" camera, like those found on mobile phones, results in weird distortions. See for example, http://www.youtube.com/watch?v=17PSgsRlO9Q, http://www.youtube.com/watch?v=LVwmtwZLG88&feature=fvwrel.

The rolling-shutter effect is a visual distortion and vertical shift of the centroid of a rotating propeller caused by the time delay from the horizontally-moving shutter of the camera.


(a) A relativistic rotating flywheel in the rest frame. (b) Deformations of the wheel shape in the frame moving with a velocity comparable to the speed of light.

Less widely understood - until now - is the link between these distortions and some of the landmark theories in physics, namely Einstein's relativity and the Hall effect.

Hall effects describe the interplay of rotation and linear motion in objects. There are already a number of manifestations of the Hall effect, including classical, quantum, and 'spin-based'.

Relativity describes effects that arise when an object approaches the speed of light. This study considered the Hall effect as arising naturally under special relativity conditions without any external fields. The researchers found that a relativistic treatment of rotating bodies and quantum wave systems with angular momentum results in deformations and a shift in the geometric centre. The distortions have parallels with those found when recording a rotating object with a rolling shutter camera.

"Our description makes relativistic and quantum aspects of angular momentum fully consistent with each other," conclude Bliokh and Nori.
This relativistic approach may find applications over a wide range of length scales including elementary spinning particles, classical light and, even rotating black holes.

Reference

Konstantin Y. Bliokh and Franco Nori, Relativistic Hall Effect: Phys. Rev. Lett. 108, 120403 (2012).
DOI: 10.1103/PhysRevLett.108.120403

Restricted link: http://prl.aps.org/abstract/PRL/v108/i12/e120403

Further information

Franco Nori, Team Leader
Digital Materials Team
RIKEN Advanced Science Institute
2-1 Hirosawa, Wako-Shi,
Saitama, 351-0198, Japan
Tel :+81-48-467-9681 secretary
Tel: +81-48-467-9707 direct
e-mail: fnori@riken.jp
Group website: http://www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/digital/index.html
Associated links
Youtube video 1
http://www.youtube.com/watch?v=17PSgsRlO9Q
Youtube video 2
http://www.youtube.com/watch?v=LVwmtwZLG88&feature=fvwrel
Digital Materials Team website
http://www.riken.go.jp/engn/r-world/research/lab/frontier/quantum/digital/index.html
Link to paper in Physical Review Letters
http://prl.aps.org/abstract/PRL/v108/i12/e120403
Journal information
Physical Review Letters DOI: 10.1103/PhysRevLett.108.120403

Adarsh Sandhu | Research asia research news
Further information:
http://www.rikenresearch.riken.jp
http://www.researchsea.com

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>