Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green Pea galaxies could help astronomers understand early universe

04.04.2013
The rare Green Pea galaxies discovered by the general public in 2007 could help confirm astronomers' understanding of reionization, a pivotal stage in the evolution of the early universe, say University of Michigan researchers.
Reionization occurred a few hundred million years after the Big Bang as the first stars were turning on and forming the first galaxies. During this period, the space between the galaxies changed from an opaque, neutral fog to a transparent charged plasma, as it is today. Plasma is gas that's electrically charged.

As for how this happened, the prevailing theory holds that massive stars in the early galaxies produced an abundance of high-energy ultraviolet light that escaped into intergalactic space. There, the UV light interacted with the neutral hydrogen gas it met, blasting electrons off the hydrogen atoms and leaving behind a plasma of negatively charged electrons and positively charged hydrogen ions.

"We think this is what happened but when we looked at galaxies nearby, the high-energy radiation doesn't appear to make it out. There's been a push to find some galaxies that show signs of radiation escaping," said Anne Jaskot, a doctoral student in astronomy.

Jaskot and Sally Oey, an associate professor of astronomy in the College of Literature, Science, and the Arts, have found that the Green Peas could hold that evidence. Their findings are published in the current edition of the Astrophysical Journal.

"The Green Peas are compact, highly star-forming galaxies that are very similar to the early galaxies in the universe," Jaskot said. "Our analysis shows they may be leaking ionizing radiation."

The researchers focused on six of the most intensely star-forming Green Pea galaxies, which are between one billion and five billion light years away. They studied their emission lines as observed by the Sloan Digital Sky Survey. Emission lines show how light interacts with matter, and in this case, they helped the astronomers understand the relationship between the stars and gas in these galaxies.

The emission lines told Jaskot and Oey how much light the galaxies absorbed. Then, to determine how much light was there to start with, they ran models to estimate, for example, how old the galaxies are and how many stars they contain. The galaxies, the researchers determined, produced more radiation than the researchers detected, so they infer that some of it must have escaped.

"An analogy might be if you have a tablecloth and you spill something on it. If you see the cloth has been stained all the way to the edges, there's a good chance it also spilled onto the floor," Jaskot said. "We're looking at the gas like the tablecloth and seeing how much light it has absorbed. It has absorbed a lot of light. We're seeing that the galaxy is saturated with it and there's probably some extra that spilled off the edges."

Jaskot says the Green Peas are exciting candidates to help astronomers understand a major milestone in the development of the cosmos 13 billion years ago.

The paper is called "The Origin and Optical Depth of Ionizing Radiation in the 'Green Pea' Galaxies. The research is funded by the National Science Foundation.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>