Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gravitational lens reveals details of distant, ancient galaxy

09.03.2012
Thanks to the presence of a natural “zoom lens” in space, University of Chicago scientists working with NASA’s Hubble Space Telescope have obtained a uniquely close-up look at the brightest gravitationally magnified galaxy yet discovered.
The imagery offers a visually striking example of gravitational lensing, in which one massive object’s gravitational field can magnify and distort the light coming from another object behind it. Such optical tricks stem from Einstein’s theory of general relativity, which describes how gravity can warp space and time, including bending the path that light travels.

In this case, gravity from the galaxy cluster RCS2 032727-132623 bent and amplified the light coming from a much more distant galaxy, 10 billion light-years from Earth. This “gravitational telescope” creates a vast arc of light, as if the distant galaxy had been reflected in a funhouse mirror. The UChicago team reconstructed what the distant galaxy really looks like, using computational tools that reversed the effect of gravitational lensing.

“What’s happening here is a manifestation of general relativity,” said Michael Gladders, assistant professor in astronomy & astrophysics at UChicago. “Instead of seeing the normal, faint image of that distant source, you see highly distorted, highly magnified, and in this case, multiple images of the source caused by the intervening gravitational mass.”

The cosmic lens gave the UChicago team the unusual opportunity to see what a galaxy looked like 10 billion years ago. The reconstructed image of the galaxy revealed regions of star formation glowing like bright points of light. These are much brighter than any star-formation region in Earth’s home galaxy, the Milky Way.

'Looking at the nature of dark matter'

In 2006 the Chicago astronomers used the Very Large Telescope in Chile to measure the arc’s distance and calculated that the galaxy appears more than three times brighter than previously discovered lensed galaxies. Then last year, Jane Rigby of NASA’s Goddard Space Flight Center in Greenbelt, Md., and the Chicago team imaged the arc with the Hubble Space Telescope’s Wide Field Camera 3.
Using this gravitational lens as a telescope offers two major scientific opportunities, Gladders said. First, “It gives us a look at that very distant source with a precision and fidelity that we couldn’t otherwise achieve,” he said.

And second, it provides an opportunity to learn something about the lens-forming mass, which is dominated by dark matter. “It’s really a way of looking at the nature of dark matter,” Gladders said. Dark matter accounts for nearly 90 percent of all matter in the universe, yet its identity remains one of the biggest mysteries of modern science.

Keren Sharon, a postdoctoral scholar at UChicago’s Kavli Institute for Cosmological Physics, led the effort to perform a detailed reconstruction of the lensed galaxy. She and her co-authors, including Gladders, NASA’s Rigby and UChicago graduate student Eva Wuyts, published their findings last month in the Astrophysical Journal.

Sharon painstakingly created a computer reconstruction of the gravitational lens, then reverse-engineered the distorted image to determine the distant galaxy’s actual appearance. “It’s a little bit of an art, but there’s a lot of physics in it. That’s the beauty of it,” Sharon said. “It was a fun puzzle to solve, especially when we had such great data.”

Gladders said Sharon is “one of the world experts on exactly how to do this. Combine that degree of finesse with this quality of data, and you get a very nice result. This object now becomes not only the brightest-lensed source known, but because of this analysis, it is also going to be one of the best-understood sources.”

Through spectroscopy, the spreading out of light into its constituent colors, the team plans to analyze the distant galaxy’s star-forming regions from the inside out to better understand why they are forming so many stars.

The team also has obtained data from one of the twin Magellan Telescopes to help them determine why the galaxy, which is 10 billion light years away, looks so irregular.

“It’s not like we have something to compare it to,” Sharon said. “We don’t know what other galaxies at the same distance look like at this level of detail.”

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>