Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene applications in electronics and photonics

02.11.2011
Graphene, which is composed of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice (like atomic-scale chicken wire), is the world's thinnest material – and one of the hardest and strongest. Indeed, the past few years have seen an explosion of research into the properties and potential applications of graphene, which has been touted as a superior alternative to silicon.

Because graphene is a two-dimensional material, "all of it is an exposed surface," says physical chemist Phaedon Avouris, manager of the Nanometer Scale Science and Technology division at IBM's T.J. Watson Research Center in Yorktown Heights, N.Y.

"While graphene has a number of extremely useful properties, including very fast electron mobility, high mechanical strength, and excellent thermal conductivity, the interactions of graphene with its environment – for example, with the substrate it is placed on, the ambient environment, or other materials in a device structure – can drastically affect and change its intrinsic properties."

"Our interest is to understand the properties of this new material under conditions that are present in actual technology and apply this knowledge to design, fabricate, and test graphene-based electronic and optoelectronic devices and circuits," says Avouris, who will present new experimental results on the use of graphene in fast electronics and photonics at the AVS meeting in Nashville, Tenn., held Oct. 30 – Nov. 4. He will also discuss what still needs to be done to translate these applications into commercial products.

Avouris, an IBM Fellow, has been involved in nanotechnology research for 25 years, and has spent the last 15 years studying the properties and applications of carbon nanotubes, a close relative of graphene. "So it was natural that when graphene was isolated in 2004, I turned my attention to it. With the help of funding from DARPA, we started a focused effort on graphene electronics," he says.

Unlike conventional semiconductors like silicon and gallium arsenide, which are currently used in electronics, graphene does not have a band-gap – the energy difference between a material's non-conductive and conductive state. "This makes it unsuitable for building digital switches, which require the ability to switch the current off completely," Avouris says. "However," he adds, "the excellent electrical properties of graphene, such as its high electron mobility coupled with modest current modulation, make it very appropriate for very fast (high-frequency) analog electronics," which are used in wireless communications, radar, security systems, imaging, and other applications.

"We already have demonstrated high-frequency graphene transistors – greater than 200 gigahertz – and simple electronic circuits such as frequency mixers," says Avouris, "and we have also demonstrated very fast photodetectors and have used them to detect optical data streams."

In the future, graphene researchers need to improve the quality of synthetic graphene and to study its properties under conditions relevant to technology, says Avouris, who is "very optimistic" about the future of graphene in both electronics and photonics and anticipates the development of additional new applications.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation NS-WeM-4, "Graphene-based Electronics and Optoelectronics," is at 9 a.m. on Wednesday, Nov. 2.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Exploring the mysteries of supercooled water
01.03.2017 | American Institute of Physics

nachricht Optical generation of ultrasound via photoacoustic effect
01.03.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>