Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Good vibrations feel the force

23.02.2018

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are at large distances from the equilibrium arrangements. This promises new insights into the mechanical properties of matter and their instability near phase changes.


Strong-field mid-infrared excitation allows to drive lattice vibrations of a crystal into the highly anharmonic regime. Here, the atoms oscillate not only at their fundamental frequency but also at overtones, so called higher harmonics. The measurement of this atomic motion far away from equilibrium allows to reconstruct the interatomic potential. Copyright: Joerg Harms, MPSD

Crystals are held together by extremely strong forces, which determine all their thermal and mechanical properties. The temperature at which a specific material melts or changes shape and the material's resistance to pressure and shear distortions are all determined by this ‘force field’.

It is the basis of any textbook description of a material and is routinely calculated by sophisticated theoretical methods. Still, until now no experiment could quantitatively validate these calculations or at least measure the force field.

In a recent study by the MPSD group led by Andrea Cavalleri, ultrashort laser flashes at mid-infrared frequencies were used to move atoms far away from their equilibrium arrangement. By measuring how the same atoms were made to ring after the impulse had been turned off, the MPSD research group could reconstruct the nature of the forces that hold the crystal together.

“We use strong laser fields to drive the atoms to displacements where their dynamics can no longer be described within the harmonic approximation,” explains Alexander von Hoegen, doctorate at the MPSD and first author of this paper. “In this situation, the restoring forces acting on the atoms are no longer linear proportional to the displacements from the equilibrium positions, as they would be in the case of small oscillations in a pendulum.”

Such nonlinear phononics is for example manifested by the fact that the atoms not only oscillate at their natural frequency, but also at multiple overtones, the so-called higher harmonics observed in this study.

The corresponding atomic displacements, enormous on the scale of the interatomic distances, are nevertheless only of the order of a few picometers, that is a millionth of a billionth of a meter. The vibrations were traced with a second, even shorter laser pulse.

Although the atoms were found to oscillate with speeds beyond 1000 m/s, their motion could be traced in ultra-slow motion. This time-resolved measurement was key to reconstructing the forces acting on the atoms.

This work by the MPSD establishes a new type of nonlinear spectroscopy that captures one of the most fundamental microscopic properties of materials, underscoring the power of new advanced optical sources and paving the way to a future, even more insightful class of experiments at the Hamburg X-ray Free Electron Laser.

The paper was made possible through the ERC Synergy Grant “Frontiers in Quantum Materials’ Control” (Q-MAC), the excellence cluster “The Hamburg Centre for Ultrafast Imaging (CUI), as well as the SFB project “Light Induced Dynamics and Control of Correlated Quantum Systems”.

Reference:
Probing the interatomic potential of solids with strong-field nonlinear phononics
A. von Hoegen, R. Mankowsky, M. Fechner, M. Först & A. Cavalleri
Nature, online, 21. Feb. 2018
DOI: 10.1038/nature25484

Extended figure caption:
Strong-field mid-infrared excitation allows to drive lattice vibrations of a crystal into the highly anharmonic regime. Here, the atoms oscillate not only at their fundamental frequency but also at overtones, so called higher harmonics. The measurement of this atomic motion far away from equilibrium allows to reconstruct the interatomic potential. Copyright: Joerg Harms, MPSD

Contacts:

Alexander von Hoegen
+49-(0)40-8998-6551 / alexander.von-hoegen@mpsd.mpg.de

Prof. Andrea Cavalleri
+49 (0)40 8998 5354 / andrea.cavalleri@mpsd.mpg.de

Jenny Witt
Kommunikation und Öffentlichkeitsarbeit
+49 (0)40 8998-6593 / pr@mpsd.mpg.de

Weitere Informationen:

https://dx.doi.org/10.1126/science.aan3438 Originalpublikation
http://qcmd.mpsd.mpg.de/ Webseite der Forschungsgruppe um Prof. Andrea Cavalleri

Dr. Joerg Harms | Max-Planck-Institut für Struktur und Dynamik der Materie

More articles from Physics and Astronomy:

nachricht Organic light-emitting diodes become brighter and more durable
28.05.2018 | Technische Universität Dresden

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

12th COMPAMED Spring Convention: Innovative manufacturing processes of modern implants

28.05.2018 | Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

 
Latest News

International Workshop Sees Central Role for Solar in Transforming the World Energy Economy

28.05.2018 | Seminars Workshops

Cognitive Power Electronics 4.0 is gaining momentum

28.05.2018 | Trade Fair News

Organic light-emitting diodes become brighter and more durable

28.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>