Stiffness matters

Graphic: Prasad Shastri, Shengnan Xiang

Nanomedicines need to get taken up by diseased cells in order to release their cargo. Cancer cells have altered membrane properties, which hamper their ability to take up nanomedicines. A research team led by Prof. Dr. Prasad Shastri at the University of Freiburg has shown that, the stiffness of cancer cell plasma membrane affects how nanoparticles get internalized, and this process can be enhanced when the cell plasma membrane stiffness is increased. These findings are published in the scientific journal Small.

“In order to increase therapeutic effectiveness, it is critical to find general principles that can positively influence uptake of nanomedicines into cells” emphasizes Shastri. A cell swallows nanomaterial from its immediate environment via deformation of the cell membrane through a process called endocytosis.

According to Shastri, up to this point research efforts have primarily focused on how and which membrane proteins are responsible for this process. It is still relatively unclear what role the biophysical properties of cell membrane play in this process.

The Freiburg team of Shastri, Dr. Shengnan Xiang and Dr. Melika Sarem, have now discovered that liposomes – nanoscale vesicles of lipid molecules encompassing an aqueous core – can be used to alter the stiffness of the cell plasma membrane through lipid transfer.

Increasing the stiffness of cancer cell membrane enhanced the entry of polymer nanoparticles through pathways rich in cholesterol. “The results show that the biophysical properties of the cell membrane provide important starting points for further improving targeted treatment of tumor cells,” summarizes Shastri.

Prasad Shastri is the Professor of Biofunctional Macromolecular Chemistry at the Institute for Macromolecular Chemistry and the Professor of Cell Signalling Environments in the Cluster of Excellence BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

Original publication:
Shengnan Xiang, Melika Sarem, Samveg Shah, and V. Prasad Shastri (2018): Liposomal Treatment of Cancer Cells Modulates Uptake Pathway of Polymeric Nanoparticles by Altering Membrane Stiffness. In: Small. doi: 10.1002/smll.201704245

Contact:
Prof. Dr. Prasad Shastri
Institute for Macromolecular Chemistry & BIOSS Centre for Biological Signalling Studies
University of Freiburg
Tel.: 0761/203-6271
E-Mail: prasad.shastri@makro.uni-freiburg.de
Email: Prasad.shastri@gmail.com

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/stiffness-matters?set_l…

Media Contact

Rudolf-Werner Dreier idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

An artificial cell on a chip

Researchers at the University of Basel have developed a precisely controllable system for mimicking biochemical reaction cascades in cells. Using microfluidic technology, they produce miniature polymeric reaction containers equipped with…

Specific and rapid expansion of blood vessels

Nature Communications: KIT researchers identify a new mechanism to control endothelial cell size and arterial caliber – basis for better treatment of heart infarct and stroke. Upon a heart infarct…

Climate change drives plants to extinction in the Black Forest in Germany

Climate change is leaving its mark on the bog complexes of the German Black Forest. Due to rising temperatures and longer dry periods, two plant species have already gone extinct…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close