Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant simulation could solve mystery of “dark matter”

06.11.2008
The search for a mysterious substance which makes up most of the Universe could soon be at an end, according to new research.

Dark matter is believed to account for 85 per cent of the Universe’s mass but has remained invisible to telescopes since scientists inferred its existence from its gravitational effects more than 75 years ago.

Now the international Virgo Consortium, a team of scientists including cosmologists at Durham University, has used a massive computer simulation showing the evolution of a galaxy like the Milky Way to “see” gamma-rays given off by dark matter.

They say their findings, published in the prestigious scientific journal Nature (Thursday, November 6), could help NASA’s Fermi Telescope in its search for the dark matter and open a new chapter in our understanding of the Universe.

The Virgo Consortium looked at dark matter halos – structures surrounding galaxies – which contain a trillion times the mass of the Sun.

Their simulations – called The Aquarius Project - showed how the galaxy’s halo grew through a series of violent collisions and mergers between much smaller clumps of dark matter that emerged from the Big Bang.

The researchers found that gamma-rays produced when particles collided in areas of high dark matter density could be most easily detectable in regions of the Milky Way lying close to the Sun in the general direction of the galaxy’s centre.

They suggest the Fermi Telescope should search in this part of the galaxy where they predict that gamma-rays from dark matter should glow in “a smoothly varying and characteristic pattern”.

If Fermi does detect the predicted emission from the Milky Way’s smooth inner halo the Virgo team believes it might be able to see otherwise invisible clumps of dark matter lying very close to the Sun.

The Virgo research involved scientists from the Max Planck Institute for Astrophysics in Germany, The Institute for Computational Cosmology at Durham University, UK, the University of Victoria in Canada, the University of Massachusetts, USA, and the University of Groningen in the Netherlands.

Professor Carlos Frenk, Director of the Institute for Computational Cosmology, at Durham University, said: “Solving the dark matter riddle will be one of the greatest scientific achievements of our time.

“The search for dark matter has dominated cosmology for many decades. It may soon come to an end.”

Professor Simon White, Director of the Max Planck Institute for Astrophysics, said: “These calculations finally allow us to ‘see’ what the dark matter distribution should look like near the Sun where we might stand a chance of detecting it.”

Dr Volker Springel, of the Max Planck Institute for Astrophysics, led the computer simulations which took 3.5 million processor hours to complete.

Dr Springel said: “This calculation has redefined the state of the art in cosmological simulations. At times I thought it would never end.”

The research was funded by the Max Planck Society, the Bavarian Computing Centre, a Royal Society Wolfson Research Merit Award and the Science and Technology Facilities Council.

Alex Thomas | alfa
Further information:
http://www.dur.ac.uk/
http://www.mpa-garching.mpg.de/
http://royalsociety.org/

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>