Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant planet ejected from the solar system

11.11.2011
Just as an expert chess player sacrifices a piece to protect the queen, the solar system may have given up a giant planet and spared the Earth, according to an article recently published in The Astrophysical Journal Letters.

"We have all sorts of clues about the early evolution of the solar system," says author Dr. David Nesvorny of the Southwest Research Institute. "They come from the analysis of the trans-Neptunian population of small bodies known as the Kuiper Belt, and from the lunar cratering record."

These clues suggest that the orbits of giant planets were affected by a dynamical instability when the solar system was only about 600 million years old. As a result, the giant planets and smaller bodies scattered away from each other.

Some small bodies moved into the Kuiper Belt and others traveled inward, producing impacts on the terrestrial planets and the Moon. The giant planets moved as well. Jupiter, for example, scattered most small bodies outward and moved inward.

This scenario presents a problem, however. Slow changes in Jupiter's orbit, such as the ones expected from interaction with small bodies, would have conveyed too much momentum to the orbits of the terrestrial planets, stirring up or disrupting the inner solar system and possibly causing the Earth to collide with Mars or Venus.

"Colleagues suggested a clever way around this problem," says Nesvorny. "They proposed that Jupiter's orbit quickly changed when Jupiter scattered off of Uranus or Neptune during the dynamical instability in the outer solar system." The "jumping-Jupiter" theory, as it is known, is less harmful to the inner solar system, because the orbital coupling between the terrestrial planets and Jupiter is weak if Jupiter jumps.

Nesvorny conducted thousands of computer simulations of the early solar system to test the jumping-Jupiter theory. He found that, as hoped for, Jupiter did in fact jump by scattering from Uranus or Neptune. When it jumped, however, Uranus or Neptune was knocked out of the solar system. "Something was clearly wrong," he says.

Motivated by these results, Nesvorny wondered whether the early solar system could have had five giant planets instead of four. By running the simulations with an additional giant planet with mass similar to that of Uranus or Neptune, things suddenly fell in place. One planet was ejected from the solar system by Jupiter, leaving four giant planets behind, and Jupiter jumped, leaving the terrestrial planets undisturbed.

"The possibility that the solar system had more than four giant planets initially, and ejected some, appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, indicating the planet ejection process could be a common occurrence," says Nesvorny.

This research was funded by the National Lunar Science Institute and the National Science Foundation. The paper, "Young Solar System’s Fifth Giant Planet?" by Dr. David Nesvorny was published online by The Astrophysical Journal Letters.

Editors: An image and animation to accompany this release are available at
http://swri.org/press/2011/giant-planet.htm.
For more information, contact Maria Martinez, (210) 522-3305, Communications Department, Southwest Research Institute, PO Drawer 28510, San Antonio, TX 78228-0510

Maria I. Martinez | EurekAlert!
Further information:
http://www.swri.org

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>