Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy cluster hidden in plain view

07.03.2012
A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope.

The galaxy cluster is located 10.5 billion light years away in the direction of the constellation Leo. It is made up of 30 galaxies packed closely together, forming the earliest known "galaxy city" in the universe. The findings will be published in the Astrophysical Journal Letters.

Remarkably, the cluster was completely missed by previous surveys, which searched this region of the sky for thousands of hours and were conducted by all the major ground- and space-based observing facilities, including the Hubble Space Telescope. Despite these intense observations, accurate distances for such faint and distant galaxies were missing until the advent of FourStar.

Eric Persson of the Carnegie Observatories* led the development of the new camera that enabled these observations. Persson and his team--which includes Carnegie's David Murphy, Andy Monson, Dan Kelson, Pat McCarthy, and Ryan Quadri--equipped FourStar with five special filters to collect images that are sensitive to narrow slices of the near-infrared spectrum. This powerful approach allows them to measure accurate distances between Earth and thousands of distant galaxies at one time, providing a 3-D map of the early universe.

The 3-D map revealed the conspicuous concentration of galaxies that existed when the universe was only three billion years old.

"This means the galaxy cluster is still young and should continue to grow into an extremely dense structure possibly containing thousands of galaxies," explained lead author Lee Spitler of Australia's Swinburne University of Technology.

Studying this system will help astronomers understand how galaxies are influenced by their environment, evolve, and assemble into larger structures.

The finding is part of a larger survey, the FourStar Galaxy Evolution Survey ("Z-FOURGE"), led by Dr. Ivo Labbé, a former Carnegie postdoctoral fellow, now at Leiden Observatory in the Netherlands. The focus of the survey is to address a classical problem in observational astronomy: determining distances. Only then do you know if a point of light is a star in our Milky Way, a small nearby galaxy, or a large one very far away.

The Z-FOURGE observations are being conducted using the Magellan 6.5- meter telescope at Carnegie's Las Campanas Observatory in Chile. From the first six months of the survey, the team obtained accurate distances for faint galaxies over a region roughly one-fifth the apparent size of the Moon. Though the area is relatively small, they found about a thousand galaxies at even greater distances than the new cluster.

"The excellent image quality and sensitivity of Magellan and FourStar really make the difference,"Labbé said. "We look forward to many more exciting and unexpected discoveries!"

For more information about this project, visit:
http://z-fourge.obs.carnegiescience.edu/

*The full list of the research team is: Karl Glazebrook, Glenn G. Kacprzak, Ivo Labbé (PI), Daniel D. Kelson, Patrick J. McCarthy, Andy Monson, David Murphy, Casey Papovich, S. Eric Persson, Ryan Quadri, Lee R. Spitler, Caroline M. S. Straatman, Vithal Tilvi, Kim-Vy H. Tran, and Pieter van Dokkum.

Funding for this project came from the Carnegie Institution for Science; Swinburne University; Sterrewacht Leiden, Leiden University; Department of Physics and Astronomy, Texas A&M University; Department of Astronomy, Yale University; the Australian Research Council, Discovery Program; the Commonwealth of Australia; University of New South Wales; and the National Collaborative Research Infrastructure Strategy of the Australian Federal Government. The funding sources for FourStar are the Carnegie Institution for Science, the National Science Foundation, the Monell Foundation, Yale University, and Texas A&M University.

The Carnegie Institution for Science (carnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Eric Persson | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>