Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy cluster hidden in plain view

07.03.2012
A team of astronomers has discovered the most distant cluster of red galaxies ever observed using FourStar, a new and powerful near-infrared camera on the 6.5m Magellan Baade Telescope.

The galaxy cluster is located 10.5 billion light years away in the direction of the constellation Leo. It is made up of 30 galaxies packed closely together, forming the earliest known "galaxy city" in the universe. The findings will be published in the Astrophysical Journal Letters.

Remarkably, the cluster was completely missed by previous surveys, which searched this region of the sky for thousands of hours and were conducted by all the major ground- and space-based observing facilities, including the Hubble Space Telescope. Despite these intense observations, accurate distances for such faint and distant galaxies were missing until the advent of FourStar.

Eric Persson of the Carnegie Observatories* led the development of the new camera that enabled these observations. Persson and his team--which includes Carnegie's David Murphy, Andy Monson, Dan Kelson, Pat McCarthy, and Ryan Quadri--equipped FourStar with five special filters to collect images that are sensitive to narrow slices of the near-infrared spectrum. This powerful approach allows them to measure accurate distances between Earth and thousands of distant galaxies at one time, providing a 3-D map of the early universe.

The 3-D map revealed the conspicuous concentration of galaxies that existed when the universe was only three billion years old.

"This means the galaxy cluster is still young and should continue to grow into an extremely dense structure possibly containing thousands of galaxies," explained lead author Lee Spitler of Australia's Swinburne University of Technology.

Studying this system will help astronomers understand how galaxies are influenced by their environment, evolve, and assemble into larger structures.

The finding is part of a larger survey, the FourStar Galaxy Evolution Survey ("Z-FOURGE"), led by Dr. Ivo Labbé, a former Carnegie postdoctoral fellow, now at Leiden Observatory in the Netherlands. The focus of the survey is to address a classical problem in observational astronomy: determining distances. Only then do you know if a point of light is a star in our Milky Way, a small nearby galaxy, or a large one very far away.

The Z-FOURGE observations are being conducted using the Magellan 6.5- meter telescope at Carnegie's Las Campanas Observatory in Chile. From the first six months of the survey, the team obtained accurate distances for faint galaxies over a region roughly one-fifth the apparent size of the Moon. Though the area is relatively small, they found about a thousand galaxies at even greater distances than the new cluster.

"The excellent image quality and sensitivity of Magellan and FourStar really make the difference,"Labbé said. "We look forward to many more exciting and unexpected discoveries!"

For more information about this project, visit:
http://z-fourge.obs.carnegiescience.edu/

*The full list of the research team is: Karl Glazebrook, Glenn G. Kacprzak, Ivo Labbé (PI), Daniel D. Kelson, Patrick J. McCarthy, Andy Monson, David Murphy, Casey Papovich, S. Eric Persson, Ryan Quadri, Lee R. Spitler, Caroline M. S. Straatman, Vithal Tilvi, Kim-Vy H. Tran, and Pieter van Dokkum.

Funding for this project came from the Carnegie Institution for Science; Swinburne University; Sterrewacht Leiden, Leiden University; Department of Physics and Astronomy, Texas A&M University; Department of Astronomy, Yale University; the Australian Research Council, Discovery Program; the Commonwealth of Australia; University of New South Wales; and the National Collaborative Research Infrastructure Strategy of the Australian Federal Government. The funding sources for FourStar are the Carnegie Institution for Science, the National Science Foundation, the Monell Foundation, Yale University, and Texas A&M University.

The Carnegie Institution for Science (carnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Eric Persson | EurekAlert!
Further information:
http://www.carnegiescience.edu

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>