Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Galaxies for the Price of One

03.12.2013
Surprising Image Reveals New Tool to Study Magnetic Fields of Galaxies

An international group of astronomers, including Marita Krause and Rainer Beck from Max-Planck-Institut für Radioastronomie (MPIfR) in Bonn, has found a surprising and useful new probe of galactic magnetic fields. While studying gas halos around nearby galaxies, they were surprised when detailed studies with the Karl G. Jansky Very Large Array (VLA) showed that one of their subjects is not a single galaxy, but rather two, nearly perfectly superimposed on the sky to masquerade as one. The discovery allowed them to use the alignment to learn otherwise-unobtainable facts about the nearer galaxy.


The edge-on spiral galaxy UGC 10288 (horizontal) appeared to be a single object in previous radio telescope observations. However, new, detailed radio data (cyan in this image) from the NRAO's VLA reveals that the large perpendicular (vertical) extension really is a distant background galaxy with radio jets. The foreground image of UGC 10288 includes data from optical, infrared and radio telescopes. While radio data are blue, infrared observations from NASA's Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) are yellow and orange, respectively. Optical data from the Sloan Digital Sky Survey are purplish blue and show starlight; and optical data from the Kitt Peak National Observatory are rose and show heated gas.

© Jayanne English (University of Manitoba, Kanada), Judith Irwin (Queen's University, Kanada), Richard Rand, University of New Mexico, Albuquerque, and members of CHANG-ES consortium, NRAO VLA, NASA/JPL-Caltech WISE & Spitzer, NOAO, and SDSS.


This image of UGC 10288, the foreground spiral galaxy, includes data from NASA's WISE (far-infrared; orange) and Spitzer (near-infrared; yellow) space observatories, the Kitt Peak National Observatory's 0.9m telescope (ionized hydrogen; rose), and the Sloan Digital Sky Survey (optical; purplish-blue), and NRAO's VLA (radio; cyan).

© see Fig. 1

As part of a study of 35 galaxies, the astronomers observed one called UGC 10288, a spiral galaxy more than 100 million light-years distant that appears edge-on as seen from Earth. Their multiple VLA observations in 2011 and 2012 produced the best radio-telescope images of that galaxy ever made. The detailed images surprisingly revealed a more-distant galaxy, with strong radio emission, almost directly behind UGC 10288. In previous images, the two galaxies had been blended together. It is probably the first detection of an alignment of a foreground galaxy with such a strongly- emitting background galaxy with extended jets. The background galaxy is much further away, in a distance of nearly 7 billion light-years from Earth.

"This changed the picture, quite literally," says Judith Irwin, of Queen's University in Ontario, Canada. "It changed our understanding of the characteristics of UGC 10288, but also gave us an unexpected new tool for learning more about that galaxy."

The first insight gleaned from the improved images was that UGC 10288 is not forming stars as rapidly as the astronomers first thought. This is because much of the radio emission in the previous, blended images came from the background galaxy.

The new images also showed that the gas in the galaxy's "outskirts," high above its spiral disk does not form a smooth halo-like envelope as result of an extremely low star formation rate.

The background galaxy, and the fact that it is aligned with its radio jets perpendicular to UGC 10288's disk, provides a valuable means of studying the nearer galaxy. "We can use the radio waves from the background galaxy, coming through the nearer one, as a way to measure the properties of the nearer galaxy," says Jayanne English, of the University of Manitoba.

“The use of the more distant galaxy as a background candle has given us the opportunity of magnetic-field measurements in different areas of UGC 10288,” explains Marita Krause from the Max-Planck-Institut für Radioastronomie in Bonn, Germany. “Since the background galaxy is vertically orientated, we can study the magnetic field of the foreground galaxy from the disk up to regions high above.”

The researchers could measure the magnetic field via the effect of Faraday rotation which rotates the polarization plane of the radio emission of the background galaxy within the foreground galaxy.

"Ironically, the radio brightness of UGC 10288 alone is too weak to be included in the original sample, had it not been boosted by the unresolved background galaxy in earlier images," concludes Rainer Beck, also from Max-Planck-Institut für Radioastronomie. “We would have missed an excellent opportunity for magnetic field studies via extended background sources.”

Marita Krause and Rainer Beck, both from Max-Planck-Institut für Radioastronomie (MPIfR), Bonn, Germany, worked with an international team of astronomers from North America, Europe, and India who are part of the Continuum Halos in Nearby Galaxies - an EVLA Survey (CHANG-ES) consortium, led by Judith Irwin. The scientists report their findings in the December issue of the Astronomical Journal.

The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Contact

Dr. Marita Krause
Phone:+49 228 525-312
Email:mkrause@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn
Dr. Rainer Beck
Phone:+49 228 525-323
Email:rbeck@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn
Dr. Norbert Junkes
Presse- und Öffentlichkeitsarbeit
Phone:+49 228 525-399
Email:njunkes@mpifr-bonn.mpg.de
Max-Planck-Institut für Radioastronomie, Bonn
Original Paper
CHANG-ES III: UGC10288 – An Edge-on Galaxy with a Background Double-lobed Radio Source

Judith Irwin, Marita Krause, Jayanne English, Rainer Beck, Eric Murphy, Theresa Wiegert, George Heald, Rene Walterbos, Richard J. Rand, and Troy Porter, 2013, Astronomical Journal 146, 164 (eprint arXiv:1311.3894)

Dr. Norbert Junkes | Max-Planck-Institut
Further information:
http://www.mpifr-bonn.mpg.de/pressreleases/2013/12

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>