Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxies on FIRE: Star Feedback Results in Less Massive Galaxies

23.01.2014
For decades, astrophysicists have encountered a puzzling contradiction: although many galactic-wind models—simulations of how matter is distributed in our universe—predict that the majority of the "normal" matter exists in stars at the center of galaxies, in actuality these stars account for less than 10 percent of the matter in the universe.

A new set of simulations offer insight into this mismatch between the models and reality: the energy released by individual stars within galaxies can have a substantial effect on where matter is located in the universe.


A still image from the FIRE simulation videos, showing the gases in a galaxy. Magenta is cold molecular/atomic gas, which forms stars; green is warm ionized gas, most of which cools into a galaxy; red is 'hot' gas, which makes up the galaxy halo. Credit: Philip Hopkins/Caltech

The Feedback in Realistic Environments, or FIRE, project is the culmination of a multiyear, multiuniversity effort that—for the first time—simulates the evolution of galaxies from shortly after the Big Bang through today. The first simulation to factor in the realistic effects of stars on their galaxies, FIRE results suggest that the radiation from stars is powerful enough to push matter out of galaxies.

And this push is enough to account for the "missing" galactic mass in previous calculations, says Philip Hopkins, assistant professor of theoretical astrophysics at the California Institute of Technology (Caltech) and lead author of a paper resulting from the project."People have guessed for a long time that the 'missing physics' in these models was what we call feedback from stars," Hopkins says. "When stars form, they should have a dramatic impact on the galaxies in which they arise, through the radiation they emit, the winds they blow off of their surfaces, and their explosions as supernovae.

Previously, it has not been possible to directly follow any of these processes within a galaxy, so the earlier models simply estimated—indirectly—the impact of these effects."By incorporating the data of individual stars into whole-galaxy models, Hopkins and his colleagues can look at the actual effects of star feedback—how radiation from stars "pushes" on galactic matter—in each of the galaxies they study.

With new and improved computer codes, Hopkins and his colleagues can now focus their model on specific galaxies, using what are called zoom-in simulations. "Zoom-in simulations allow you to 'cut out' and study just the region of the universe—a few million light-years across, for example—around what's going to become the galaxy you care about," he says. "It would be crazy expensive to run simulations of the entire universe—about 50 billion light-years across—all at once, so you just pick one galaxy at a time, and you concentrate all of your resolution there."

A zoomed-in view of evolving stars within galaxies allows the researchers to see the radiation from stars and supernovae explosions blowing large amounts of material out of those galaxies. When they calculate the amount of matter lost from the galaxies during these events, that feedback from stars in the simulation accurately accounts for the low masses that have been actually observed in real galaxies. "The big thing that we are able to explain is that real galaxies are much less massive than they would be if these feedback processes weren't operating," he says.

"So if you care about the structure of a galaxy, you really need to care about star formation and supernovae—and the effect of their feedback on the galaxy."But once stars push this matter out of the galaxy, where does it go?That's a good question, Hopkins says—and one that the researchers hope to answer by combining their simulations with new observations in the coming months."Stars and supernovae seem to produce these galactic superwinds that blow material out into what we call the circum- and intergalactic medium—the space around and between galaxies. It's really timely for us because there are a lot of new observations of the gas in this intergalactic medium right now, many of them coming from Caltech," Hopkins says.

"For example, people have recently found that there are more heavy elements floating around a couple hundred thousand light-years away from a galaxy than are actually inside the galaxy itself. You can track the lost matter by finding these heavy elements; we know they are only made in the fusion in stars, so they had to be inside a galaxy at some point. This fits in with our picture and we can now actually start to map out where this stuff is going.

"Although the FIRE simulations can accurately account for the low mass of small- to average-size galaxies, the physics included, as in previous models, can't explain all of the missing mass in very large galaxies—like those larger than our Milky Way. Hopkins and his colleagues have hypothesized that black holes at the centers of these large galaxies might release enough energy to push out the rest of the matter not blown out by stars.

"The next step for the simulations is accounting for the energy from black holes that we've mostly ignored for now," he says.The information provided by the FIRE simulations shows that feedback from stars can alter the growth and history of galaxies in a much more dramatic way than anyone had previously anticipated, Hopkins says. "We've just begun to explore these new surprises, but we hope that these new tools will enable us to study a whole host of open questions in the field."These results were submitted to the Monthly Notices of the Royal Astronomical Society on November 8, 2013 in a paper titled "Galaxies on FIRE (Feedback In Realistic Environments):

Stellar Feedback Explains Cosmologically Inefficient Star Formation." In addition to Hopkins, other authors on the paper include Duìan Kereì, UC San Diego; José Oñorbe and James S. Bullock, UC Irvine; Claude-André Faucher-Giguère, Northwestern University; Eliot Quataert, UC Berkeley; and Norman Murray, the Canadian Institute for Theoretical Astrophysics. Hopkins's work was funded by the National Science Foundation and a NASA Einstein Postdoctoral Fellowship, as well as the Gordon and Betty Moore Foundation.

Jessica Stoller-Conrad | EurekAlert!
Further information:
http://www.caltech.edu
http://www.caltech.edu/content/galaxies-fire-star-feedback-results-less-massive-galaxies

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>