Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How galaxies came to be: Astronomers explain Hubble sequence

13.01.2010
For the first time, two astronomers have explained the diversity of galaxy shapes seen in the universe. The scientists, Dr Andrew Benson of the California Institute of Technology (Caltech) and Dr Nick Devereux of Embry-Riddle University in Arizona, tracked the evolution of galaxies over thirteen billion years from the early Universe to the present day. Their results appear in the journal Monthly Notices of the Royal Astronomical Society.

Galaxies are the collections of stars, planets, gas and dust that make up most of the visible component of the cosmos. The smallest have a few million and the largest as many as a million million (a trillion) stars.

American astronomer Edwin Hubble first developed a taxonomy for galaxies in the 1930s that has since become known as the 'Hubble Sequence'. There are three basic shapes: spiral, where arms of material wind out in a disk from a small central bulge, barred spirals, where the arms wind out in a disk from a larger bar of material and elliptical, where the galaxy's stars are distributed more evenly in a bulge without arms or disk. For comparison, the galaxy we live in, the Milky Way, has between two and four hundred thousand million stars and is classified as a barred spiral.

Explaining the Hubble Sequence is complex. The different types clearly result from different evolutionary paths but until now a detailed explanation has eluded scientists.

Benson and Devereux combined data from the infrared Two Micron All Sky Survey (2MASS) with their sophisticated GALFORM computer model to reproduce the evolutionary history of the Universe over thirteen billion years. To their surprise, their computations reproduced not only the different galaxy shapes but also their relative numbers.

"We were completely astonished that our model predicted both the abundance and diversity of galaxy types so precisely", said Devereux. "It really boosts my confidence in the model", added Benson.

The astronomers' model is underpinned by and endorses the 'Lambda Cold Dark Matter' model of the Universe. Here 'Lambda' is the mysterious 'dark energy' component believed to make up about 72% of the cosmos, with cold dark matter making up another 23%. Just 4% of the Universe consists of the familiar visible or 'baryonic' matter that makes up the stars and planets of which galaxies are comprised.

Galaxies are thought to be embedded in very large haloes of dark matter and Benson and Devereux believe these to be crucial to their evolution. Their model suggests that the number of mergers between these haloes and their galaxies drives the final outcome – elliptical galaxies result from multiple mergers whereas disk galaxies have seen none at all. Our Milky Way galaxy's barred spiral shape suggests it has seen a complex evolutionary history, with only a few minor collisions and at least one episode where the inner disk collapsed to form the large central bar.

"These new findings set a clear direction for future research. Our goal now is to compare the model predictions with observations of more distant galaxies seen in images obtained with the Hubble and those of the soon to be launched James Webb Space Telescope (JWST)", said Devereux.

CONTACTS

Dr Andrew Benson
California Institute of Technology
Tel: +1 626 407 4953
Mob: +1 626 319 0158
E-mail: abenson@its.caltech.edu
Dr Nicholas Devereux
Embry-Riddle University
Arizona
Tel: +1 928 777 3715
Mob: +1 928 273 9069
E-mail: devereux@erau.edu
Dr Robert Massey
Press and Policy Officer
Royal Astronomical Society
Tel: +44 (0)7734 3307
Mob: +44 (0)794 124 8035
E-mail: rm@ras.org.uk

Lori Oliwenstein | EurekAlert!
Further information:
http://www.caltech.edu
http://astronomy.pr.erau.edu/GalaxyEvolution/GalaxyEvolution.jpg
http://astronomy.pr.erau.edu/GalaxyEvolution/Hubble_sequence_photo.png

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>