Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Freezing magnetic monopoles

10.08.2012
How dipoles become monopoles and vice versa

Magnetic monopoles, entities with isolated north or south magnetic poles, weren't supposed to exist. If you try to saw a bar magnet in half, all you succeed in getting are two magnets, each with a south and north pole.


The unit cell for "spin ice" materials consists of two tetrahedrons. The arrows show the orientation of the magnetic atoms within the material

Credit: Stephen Powell

In recent years, however, the existence of monopoles, at least in the form of "quasiparticles" consisting of collective excitations among many atoms, has been predicted and demonstrated in the lab. Now Stephen Powell, a scientist at the Joint Quantum Institute (JQI*) and the University of Maryland, has sharpened the theoretical framework under which monopoles can operate.

"Steady flows of magnetic monopoles are apparently impossible," Powell said, "but transient currents have been demonstrated, and one could imagine creating an alternating current, the magnetic equivalent of AC electricity." This so-called 'magnetricity' might be exploited for designing new kinds of high-density data storage.

The laws of electromagnetism predict a great symmetry between electric and magnetic forces. This equality does not extend, however, to isolated magnetic "charges." Isolated electric charges, in the form of electrons, are of course quite common. Such charges attract or repel each other with a force inversely proportional to the square of the distance between the charges. A positive charge and a negative charge can team up to form a neutral electric dipole. The situation in magnetism seems different: dipoles yes, monopoles no.

But new ideas and new experiments have changed the conventional thinking. First, experiments with cold electrons flowing in a two-dimensional sheet could, under the action of powerful magnetic fields, be coaxed into moving in circular orbits. These orbits in turn seem to interact to produce quasiparticles which have a charge equal to a fraction of the conventional electron charge. This was called the fractional quantum Hall effect. Could there be an analog for magnetic dipoles? Could circumstances allow the existence of isolated (or fractional) magnetic poles?

Recent experiments and Germany and France point to this possibility in so called "spin ice," a solid material made of the elements dysprosium (Dy), titanium (Ti), and oxygen (O). The basic building block of these materials is a pair of tetrahedral groupings, with (typically) two Dy atoms (each of which acts like a tiny dipole magnet of its own) pointing out of each tetrahedron and two pointing in. This is analogous to the orientation of hydrogen atoms in water ice, hence the name "spin ice."

Normally all magnetic poles should be confined within two-pole couplets---the traditional magnetic dipole. However, at a low enough temperature, around 5 K, "frustration" among the magnetic atoms---they want to align with each other but can't because of the inherent geometry of the material---leads to a disordered state with strong, synchronized fluctuations. Unpaired magnetic poles can form amid this tumult. That is, particles (quasiparticle excitations, to be exact) in spin ice with a net magnetic "charge" can exist and move about. A gas of electric charges is called a "plasma," so some scientists refer to the analogous tenuous cloud of magnetic charges as a "monopole plasma."

Stephen Powell's paper, published presently in the journal Physical Review Letters (**), explores what happens when the fluctuations are frozen by, for example, still-colder temperatures or a high-strength magnetic field. He shows how the monopoles are confined into magnetically neutral dipoles again. He is the first to prescribe the phase transition from the monopole phase (also called the Coulomb phase since the monopoles feel the same inverse-square force effect as electric charges) into the pole-confined phase.

Going to those lower temperatures, and observing how monopoles freeze into dipoles, will be difficult to achieve in the lab since it is hard to coax the magnetic atoms into interacting strongly enough. But Powell thinks it can be done. Furthermore, if this transition were like other phase transitions, then it should be subject to a body of laws called "universality," which typify many such phenomena---water turning into ice is a favorite example. Powell is the first to address how universality pertains to the freezing process, when monopoles in spin ice lapse back into dipoles at super-low temperatures.

"These kinds of magnetic monopoles are not just mathematical abstractions," said Powell. "They really appear. They can move around, at least a little bit. Scientists need to understand how monopoles behave, even at the lowest temperatures where they get locked back into dipoles." Powell's framework for monopoles includes testable predictions about how to observe the transition from monopoles into confined poles.

(*)The Joint Quantum Institute is operated jointly by the National Institute of Standards and Technology in Gaithersburg, MD and the University of Maryland in College Park.

(**) "Universal monopole scaling near transitions from the Coulomb phase," Physical Review Letters 109, 065701 (2012)

Stephen Powell, powell@umd.edu, 301-405-3078

Phillip F. Schewe | EurekAlert!
Further information:
http://www.umd.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>