Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four new atomic nuclei discovered

09.09.2015

An international team of researchers at GSI Helmholtzzentrum für Schwerionenforschung has succeeded in discovering four new atomic nuclei. The exotic nuclei are one isotope each of the elements berkelium and neptunium and two isotopes of the element americium. The scientists used a new, highly sensitive method to create and detect the nuclei.

For the experiment, the scientists shot at a 300-nanometer-thick foil of curium with accelerated calcium nuclei. In the collisions studied, the atomic nuclei of the two elements touched, and formed a compound system for an extremely short time.


Final preparations: the head of the experiment, Dr. Sophia Heinz, of GSI and Devaraja Malligenahalli, a student from the Manipal Centre for Natural Sciences, working on the experiment’s electronics.

Copyright: G. Otto, GSI Helmholtzzentrum für Schwerionenforschung

Before the compound system could break apart again, after about a sextillionth of a second, the two nuclei involved exchanged a number of their nuclear building-blocks — protons and neutrons. Different isotopes formed as the end products of this exchange.

The isotopes of berkelium, neptunium, and americium discovered in the GSI experiment were created as the end products of such collisions. They are unstable and decay after a few milliseconds or seconds, depending on the isotope. All of the resulting decay products can be separated and analyzed using special filters composed of electrical and magnetic fields. The scientists used all of the decay products detected to identify the new isotope that has been created.

Every chemical element comes in the form of different isotopes. These isotopes are distinguished from one another by the number of neutrons in the nucleus, and thus by their mass. The newly discovered isotopes have fewer neutrons and are lighter than the previously known isotopes of the respective elements.

Due to their low number of neutrons, their structure is very exotic and therefore interesting for the development of theoretical models describing atomic nuclei. To date, we know of around 3,000 isotopes of the 114 chemical elements of the periodic system. According to scientific estimates, more than 4,000 additional, undiscovered isotopes should also exist. The hunt for these unknown isotopes goes on at GSI. Atoms that are heavier than uranium are especially interesting in this hunt.

“By using this method, we have succeeded in generating many different atomic nuclei at once,” says Sophia Heinz, the head of the experiment. “Our results are especially important for the study of super-heavy elements. New isotopes, in particular those of super-heavy elements, which contain an especially large number of neutrons, cannot be made by any other method. Experiments aimed at creating these neutron-rich nuclei are already being prepared.”

The current experiments will make it possible to explore previously unknown areas on the isotope chart. The elements 107 to 112 were discovered using the same experimental facility at GSI. The mechanisms responsible for the production of new isotopes will also be studied at the planned accelerator center FAIR in the future.

By the discovery of the four new isotopes, on the ranking list GSI moves closer to the laboratory which discovered the most isotopes. Head of the ranking list at the moment is the Lawrence Berkeley National Laboratory in the USA. GSI is on the second place.

The experiment at the GSI accelerator facility was carried out by an international team of researchers. Participants included the GSI Helmholtzzentrum für Schwerionenforschung, scientists from the Manipal Centre for Natural Sciences in India, the Justus Liebig University Giessen, the Japan Atomic Energy Agency, Lawrence Livermore National Laboratory in the USA, and the Joint Institute for Nuclear Research in Russia.

Weitere Informationen:

https://www.gsi.de/en/start/news/detailseite/2015/08/31/four-new-atomic-nuclei-d...

Dr. Ingo Peter | GSI Helmholtzzentrum für Schwerionenforschung GmbH

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>