Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focus on magnetic fields between stars and galaxies: New space research unit starts in 2010

21.12.2009
Jacobs University will participate in a new research unit of the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) under the lead of the University of Bonn.

The group's main objective is to explore the origin and structure of cosmic magnetic fields and their impact on galaxy development.

Funded for an initial three-years-period with a total of 1.9 million Euros, the researchers will employ the world's first digital and at the same time largest telescope "LOFAR" as well as supercomputer simulations to analyze the telescope observations. The Jacobs research team under the lead of Marcus Brüggen, Professor of Astrophysics, receives about 200,000 Euros of the project money.

Astrophysicists have known for quite a while that the gas between the stars of a galaxy as well as the cosmic medium between galaxies is magnetized, generating giant magnetic fields that vary in size between ten and several millions of light years in diameter. However, very little is known about their origin and the impact they have on the development of galaxies.

The key to the analysis of these magnetic fields in outer space is the so-called synchrotron radiation of electrons, which is generated by the electrons' orbital acceleration at near light-speed through these magnetic fields. The electrons were charged with the energy necessary for such radiation through shock waves of cosmic "catastrophes" like supernova explosions, collisions of galaxies or even whole galaxy clusters. The radiation pattern of the electrons, which reflects the stars' or galaxies' history, thus becomes a marker for surveying and interpreting the magnetic fields from Earth, which would otherwise not be possible.

Central to the effective and sensitive detection of the cosmic synchrotron radiation is the newly constructed digital telescope LOFAR (acronymic for Low Frequency ARay). While classical radio telescopes collect cosmic radiation with motor-operated dish-like antennae, which scan different areas of space with computer-controlled movements, LOFAR does not require any moving parts. It consists of a set of simple, small radio antennae fixed to the ground that are spread all over Europe. One antenna station, constructed by Jacobs University, is positioned close to the German city of Jülich.

All data coming in from the different antenna locations are correlated by one of the world's fastest supercomputers located in Groningen (The Netherlands). This way, the array of antennae acts like a giant radio-telescope with an equivalent dish-size of several hundred kilometres in diameter, which not only provides the telescope with a so far unparalleled sensitivity. It also enables astronomers to scan space in several directions at the same time. The interpretation of LOFAR's measurements within the scope of the DFG research unit will be accomplished by supercomputer simulations.

The DFG consortium's other research partners, besides Jacobs University and the University of Bonn, are the Ruhr University Bochum, the Astrophysical Institute Potsdam, die Ludwig Maximilian's University Munich, the Max-Planck Institute for Astrophysics in Garching, the Max Planck Institute for Radio Astronomy in Bonn, and the Thüringer Landessternwarte Tautenburg.

Contact at Jacobs University:
Marcus Brüggen, Ph. D. | Professor of Astrophysics
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/
Phone: +49 421 200-3251 | E-Mail: m.brueggen@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>