Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focus on magnetic fields between stars and galaxies: New space research unit starts in 2010

21.12.2009
Jacobs University will participate in a new research unit of the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) under the lead of the University of Bonn.

The group's main objective is to explore the origin and structure of cosmic magnetic fields and their impact on galaxy development.

Funded for an initial three-years-period with a total of 1.9 million Euros, the researchers will employ the world's first digital and at the same time largest telescope "LOFAR" as well as supercomputer simulations to analyze the telescope observations. The Jacobs research team under the lead of Marcus Brüggen, Professor of Astrophysics, receives about 200,000 Euros of the project money.

Astrophysicists have known for quite a while that the gas between the stars of a galaxy as well as the cosmic medium between galaxies is magnetized, generating giant magnetic fields that vary in size between ten and several millions of light years in diameter. However, very little is known about their origin and the impact they have on the development of galaxies.

The key to the analysis of these magnetic fields in outer space is the so-called synchrotron radiation of electrons, which is generated by the electrons' orbital acceleration at near light-speed through these magnetic fields. The electrons were charged with the energy necessary for such radiation through shock waves of cosmic "catastrophes" like supernova explosions, collisions of galaxies or even whole galaxy clusters. The radiation pattern of the electrons, which reflects the stars' or galaxies' history, thus becomes a marker for surveying and interpreting the magnetic fields from Earth, which would otherwise not be possible.

Central to the effective and sensitive detection of the cosmic synchrotron radiation is the newly constructed digital telescope LOFAR (acronymic for Low Frequency ARay). While classical radio telescopes collect cosmic radiation with motor-operated dish-like antennae, which scan different areas of space with computer-controlled movements, LOFAR does not require any moving parts. It consists of a set of simple, small radio antennae fixed to the ground that are spread all over Europe. One antenna station, constructed by Jacobs University, is positioned close to the German city of Jülich.

All data coming in from the different antenna locations are correlated by one of the world's fastest supercomputers located in Groningen (The Netherlands). This way, the array of antennae acts like a giant radio-telescope with an equivalent dish-size of several hundred kilometres in diameter, which not only provides the telescope with a so far unparalleled sensitivity. It also enables astronomers to scan space in several directions at the same time. The interpretation of LOFAR's measurements within the scope of the DFG research unit will be accomplished by supercomputer simulations.

The DFG consortium's other research partners, besides Jacobs University and the University of Bonn, are the Ruhr University Bochum, the Astrophysical Institute Potsdam, die Ludwig Maximilian's University Munich, the Max-Planck Institute for Astrophysics in Garching, the Max Planck Institute for Radio Astronomy in Bonn, and the Thüringer Landessternwarte Tautenburg.

Contact at Jacobs University:
Marcus Brüggen, Ph. D. | Professor of Astrophysics
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/
Phone: +49 421 200-3251 | E-Mail: m.brueggen@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>