Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Focus on magnetic fields between stars and galaxies: New space research unit starts in 2010

21.12.2009
Jacobs University will participate in a new research unit of the German Research Foundation (Deutsche Forschungsgemeinschaft DFG) under the lead of the University of Bonn.

The group's main objective is to explore the origin and structure of cosmic magnetic fields and their impact on galaxy development.

Funded for an initial three-years-period with a total of 1.9 million Euros, the researchers will employ the world's first digital and at the same time largest telescope "LOFAR" as well as supercomputer simulations to analyze the telescope observations. The Jacobs research team under the lead of Marcus Brüggen, Professor of Astrophysics, receives about 200,000 Euros of the project money.

Astrophysicists have known for quite a while that the gas between the stars of a galaxy as well as the cosmic medium between galaxies is magnetized, generating giant magnetic fields that vary in size between ten and several millions of light years in diameter. However, very little is known about their origin and the impact they have on the development of galaxies.

The key to the analysis of these magnetic fields in outer space is the so-called synchrotron radiation of electrons, which is generated by the electrons' orbital acceleration at near light-speed through these magnetic fields. The electrons were charged with the energy necessary for such radiation through shock waves of cosmic "catastrophes" like supernova explosions, collisions of galaxies or even whole galaxy clusters. The radiation pattern of the electrons, which reflects the stars' or galaxies' history, thus becomes a marker for surveying and interpreting the magnetic fields from Earth, which would otherwise not be possible.

Central to the effective and sensitive detection of the cosmic synchrotron radiation is the newly constructed digital telescope LOFAR (acronymic for Low Frequency ARay). While classical radio telescopes collect cosmic radiation with motor-operated dish-like antennae, which scan different areas of space with computer-controlled movements, LOFAR does not require any moving parts. It consists of a set of simple, small radio antennae fixed to the ground that are spread all over Europe. One antenna station, constructed by Jacobs University, is positioned close to the German city of Jülich.

All data coming in from the different antenna locations are correlated by one of the world's fastest supercomputers located in Groningen (The Netherlands). This way, the array of antennae acts like a giant radio-telescope with an equivalent dish-size of several hundred kilometres in diameter, which not only provides the telescope with a so far unparalleled sensitivity. It also enables astronomers to scan space in several directions at the same time. The interpretation of LOFAR's measurements within the scope of the DFG research unit will be accomplished by supercomputer simulations.

The DFG consortium's other research partners, besides Jacobs University and the University of Bonn, are the Ruhr University Bochum, the Astrophysical Institute Potsdam, die Ludwig Maximilian's University Munich, the Max-Planck Institute for Astrophysics in Garching, the Max Planck Institute for Radio Astronomy in Bonn, and the Thüringer Landessternwarte Tautenburg.

Contact at Jacobs University:
Marcus Brüggen, Ph. D. | Professor of Astrophysics
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/
Phone: +49 421 200-3251 | E-Mail: m.brueggen@jacobs-university.de

Dr. Kristin Beck | idw
Further information:
http://www.jacobs-university.de/
http://wwwback.jacobs-university.de/drupal_lists/directory/02799/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>