Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flexible wings driven by simple oscillation may be viable for efficient micro air vehicles

23.11.2010
In the future, tiny air vehicles may be able to fly through cracks in concrete to search for earthquake victims, explore a contaminated building or conduct surveillance missions for the military. But today, designing the best flying mechanism for these miniature aerial machines is still a challenging task.

Creating micro-scale air vehicles that mimic the flapping of winged insects or birds has become popular, but they typically require a complex combination of pitching and plunging motions to oscillate the flapping wings. To avoid some of the design challenges involved in mimicking insect wing strokes, researchers at the Georgia Institute of Technology propose using flexible wings that are driven by a simple sinusoidal flapping motion.

"We found that the simple up and down wavelike stroke of wings at the resonance frequency is easier to implement and generates lift comparable to winged insects that employ a significantly more complex stroke," said Alexander Alexeev, an assistant professor in Georgia Tech's School of Mechanical Engineering.

Details of the flapping motion proposed by Alexeev and mechanical engineering graduate student Hassan Masoud were presented on Nov. 22 at the 63rd Annual Meeting of the American Physical Society Division of Fluid Dynamics. A paper published in the May issue of the journal Physical Review E also reported on this work, which is supported in part by the National Science Foundation through TeraGrid computational resources.

In nature, flapping-wing flight has unparalleled maneuverability, agility and hovering capability. Unlike fixed-wing and rotary-wing air vehicles, micro air vehicles integrate lifting, thrusting and hanging into a flapping wing system, and have the ability to cruise a long distance with a small energy supply. However, significant technical challenges exist in designing flapping wings, many motivated by an incomplete understanding of the physics associated with aerodynamics of flapping flight at small size scales.

"When you want to create smaller and smaller vehicles, the aerodynamics change a lot and modeling becomes important," said Alexeev. "We tried to gain insight into the flapping aerodynamics by using computational models and identifying the aerodynamic forces necessary to drive these very small flying machines."

Alexeev and Masoud used three-dimensional computer simulations to examine for the first time the lift and hovering aerodynamics of flexible wings driven at resonance by sinusoidal oscillations. The wings were tilted from the horizontal and oscillated vertically by a force applied at the wing root. To capture the dynamic interactions between the wings and their environment, the researchers used a hybrid computational approach that integrated the lattice Boltzmann model for fluid dynamics and the lattice spring model for the mechanics of elastic wings.

The simulations revealed that at resonance -- the frequencies when a system oscillates at larger amplitudes -- tilted elastic wings driven by a simple harmonic stroke generated lift comparable to that of small insects that employ a significantly more complex stroke. In addition, the simulations identified one flapping regime that enabled maximum lift and another that revealed maximum efficiency. The efficiency was maximized at a flapping frequency 30 percent higher than the frequency for maximized lift.

"This information could be useful for regulating the flight of flapping-wing micro air vehicles since high lift is typically needed only during takeoff, while the enhanced aerodynamic efficiency is essential for a long-distance cruise flight," noted Masoud.

To facilitate the design of practical micro-scale air vehicles that employ resonance flapping, the researchers plan to examine how flapping wings can be effectively controlled in different flow conditions including unsteady gusty environments. They are also investigating whether wings with non-uniform structural and mechanical properties and wings driven by an asymmetric stroke may further improve the resonance performance of flapping wings.

Abby Vogel Robinson | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

Icebergs: Mathematical model calculates the collapse of shelf ice

24.08.2017 | Earth Sciences

Improved monitoring of coral reefs with the HyperDiver

24.08.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>