Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First particles circulate in SuperKEKB accelerator

14.04.2016

Mainz-based physicists involved in detector construction and analysis of future experiments

The SuperKEKB particle accelerator at the KEK research center in Japan has recently reached a major milestone: electrons and positrons have been circulated for the first time around the rings. The accelerator is now being commissioned and the start of data taking is foreseen for 2017.


Plan of the SuperKEKB accelerator with the Belle-II detector

ill./©: KEK

One of the core questions to be investigated in these experiments is why the universe today is filled almost only with matter while in the Big Bang matter and antimatter should have been created in equal amounts. Physicists at Johannes Gutenberg University Mainz (JGU) are involved in the development of the slow-control of the detector.

The group of Professor Concettina Sfienti at the Institute of Nuclear Physics at Mainz University will be working together with some 600 scientists from 23 countries to analyze the data.

As the new accelerator is designed to deliver forty times more collisions than its predecessor KEKB, the Belle detector is also being upgraded to cope with the extreme requirements of the modified collider. The German contribution to the new Belle-II detector is a high-resolution tracker that is at the heart of the device and can very precisely record the tracks left by the generated particles. It is accurate to less than half the thickness of a human hair.

The team of physicists from Mainz provide the expertise to create the software required to monitor the detector and the readout electronics. This software is used to control the operating parameters of the detector and to continually monitor its efficiency. Although the high collision rate envisaged means that it is necessary to employ hardware that comes close to the very limits of what is feasible and is thus extremely expensive, the flip side of the coin is that this should make it possible to detect rare events.

"We have reached an important turning point in the development of the SuperKEKB, an accelerator that will have forty times the luminosity of the most powerful collider ever built. The experiment will supply us with a lot of new highly precise data which may also lead to the discovery of new particles," said Sfienti.

Moreover, it is hoped that evidence of very rare events that may have occurred in the early phases of the creation of our universe will be discovered, providing insight into new laws of physics beyond those of the Standard Model.

Further information:
Professor Dr. Concettina Sfienti
Institute of Nuclear Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25841
e-mail: sfienti@uni-mainz.de
http://www.concettinasfienti.com/

Weitere Informationen:

http://www.uni-mainz.de/presse/20191_ENG_HTML.php – press release ;
https://www.kek.jp/en/index.html – KEK research center ;
http://www.kek.jp/en/NewsRoom/Release/20160302163000/ – press release "First turns and successful storage of beams in the SuperKEKB electron and positron rings", KEK

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>