Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First particles circulate in SuperKEKB accelerator

14.04.2016

Mainz-based physicists involved in detector construction and analysis of future experiments

The SuperKEKB particle accelerator at the KEK research center in Japan has recently reached a major milestone: electrons and positrons have been circulated for the first time around the rings. The accelerator is now being commissioned and the start of data taking is foreseen for 2017.


Plan of the SuperKEKB accelerator with the Belle-II detector

ill./©: KEK

One of the core questions to be investigated in these experiments is why the universe today is filled almost only with matter while in the Big Bang matter and antimatter should have been created in equal amounts. Physicists at Johannes Gutenberg University Mainz (JGU) are involved in the development of the slow-control of the detector.

The group of Professor Concettina Sfienti at the Institute of Nuclear Physics at Mainz University will be working together with some 600 scientists from 23 countries to analyze the data.

As the new accelerator is designed to deliver forty times more collisions than its predecessor KEKB, the Belle detector is also being upgraded to cope with the extreme requirements of the modified collider. The German contribution to the new Belle-II detector is a high-resolution tracker that is at the heart of the device and can very precisely record the tracks left by the generated particles. It is accurate to less than half the thickness of a human hair.

The team of physicists from Mainz provide the expertise to create the software required to monitor the detector and the readout electronics. This software is used to control the operating parameters of the detector and to continually monitor its efficiency. Although the high collision rate envisaged means that it is necessary to employ hardware that comes close to the very limits of what is feasible and is thus extremely expensive, the flip side of the coin is that this should make it possible to detect rare events.

"We have reached an important turning point in the development of the SuperKEKB, an accelerator that will have forty times the luminosity of the most powerful collider ever built. The experiment will supply us with a lot of new highly precise data which may also lead to the discovery of new particles," said Sfienti.

Moreover, it is hoped that evidence of very rare events that may have occurred in the early phases of the creation of our universe will be discovered, providing insight into new laws of physics beyond those of the Standard Model.

Further information:
Professor Dr. Concettina Sfienti
Institute of Nuclear Physics
Johannes Gutenberg University Mainz (JGU)
55099 Mainz, GERMANY
phone +49 6131 39-25841
e-mail: sfienti@uni-mainz.de
http://www.concettinasfienti.com/

Weitere Informationen:

http://www.uni-mainz.de/presse/20191_ENG_HTML.php – press release ;
https://www.kek.jp/en/index.html – KEK research center ;
http://www.kek.jp/en/NewsRoom/Release/20160302163000/ – press release "First turns and successful storage of beams in the SuperKEKB electron and positron rings", KEK

Petra Giegerich | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>