Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extremely fast MRAM data storage within reach

Patented PTB invention solves the problem of "magnetic ringing"

Magnetic Random Access Memories (MRAM) are the most important new modules on the market of computer storage devices. Like the well known USB-sticks, they store information into static memory, but MRAM offer short access times and unlimited writing properties. Commercial MRAMs have been on the market since 2005.

Electron-microscopic recording of an MRAM storage cell (Fig.: PTB)

They are, however, still slower than the competitors they have among the volatile storage media. An invention made by the Physikalisch-Technische Bundesanstalt (PTB) changes this situation: A special chip connection, in association with dynamic triggering of the component, reduces the response from - so far - 2 ns to below 500 ps. This corresponds to a data rate of up to 2 GBit (instead of the approx. 400 MBit so far). Power consumption and the thermal load will be reduced, as well as the bit error rate. The European patent is just being granted this spring; the US patent was already granted in 2010. An industrial partner for further development and manufacturing such MRAMs under licence is still being searched for.

Fast computer storage chips like DRAM and SRAM (Dynamic and Static Random Access Memory) which are commonly used today, have one decisive disadvantage: in the case of an interruption of the power supply, the information stored on them is irrevocably lost. The MRAM promises to put an end to this. In the MRAM, the digital information is not stored in the form of an electric charge, but via the magnetic alignment of storage cells (magnetic spins). MRAMs are very universal storage chips because they allow - in addition to the non-volatile information storage - also faster access, a high integration density and an unlimited number of writing and reading cycles.

However, the current MRAM models are not yet fast enough to outperform the best competitors. The time for programming a magnetic bit amounts to approx. 2 ns. Whoever wants to speed this up, reaches certain limits which have something to do with the fundamental physical properties of magnetic storage cells: during the programming process, not only the desired storage cell is magnetically excited, but also a large number of other cells. These excitations – the so-called magnetic ringing – are only slightly attenuated, their decay can take up to approx. 2 ns, and during this time, no other cell of the MRAM chip can be programmed. As a result, the maximum clock rate of MRAM is, so far, limited to approx. 400 MHz. Until now, all experiments made to increase the velocity have led to intolerable write errors. Now, PTB scientists have optimized the MRAM design and integrated the so-called ballistic bit triggering which has also been developed at PTB. Here, the magnetic pulses which serve for the programming are selected in such a skilful way that the other cells in the MRAM are hardly magnetically excited at all. The pulse ensures that the magnetization of a cell which is to be switched performs half a precision rotation (180°), while a cell whose storage state is to remain unchanged performs a complete precision rotation (360°). In both cases, the magnetization is in the state of equilibrium after the magnetic pulse has decayed, and magnetic excitations do not occur any more.

This optimal bit triggering also works with ultra-short switching pulses with a duration below 500 ps. The maximum clock rates of the MRAM are, therefore, above 2 GHz. In addition, several bits can be programmed at the same time which would allow the effective write rate per bit to be increased again by more than one order. This invention allows clock rates to be achieved with MRAM which can compete with those of the fastest volatile storage components.


Contact at PTB:
Dr. Bernhard Smandek, PTB Technology Transfer,
phone: +49(0)531 592-8303,

Erika Schow | PTB
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>