Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extremely fast MRAM data storage within reach

08.03.2011
Patented PTB invention solves the problem of "magnetic ringing"

Magnetic Random Access Memories (MRAM) are the most important new modules on the market of computer storage devices. Like the well known USB-sticks, they store information into static memory, but MRAM offer short access times and unlimited writing properties. Commercial MRAMs have been on the market since 2005.


Electron-microscopic recording of an MRAM storage cell (Fig.: PTB)

They are, however, still slower than the competitors they have among the volatile storage media. An invention made by the Physikalisch-Technische Bundesanstalt (PTB) changes this situation: A special chip connection, in association with dynamic triggering of the component, reduces the response from - so far - 2 ns to below 500 ps. This corresponds to a data rate of up to 2 GBit (instead of the approx. 400 MBit so far). Power consumption and the thermal load will be reduced, as well as the bit error rate. The European patent is just being granted this spring; the US patent was already granted in 2010. An industrial partner for further development and manufacturing such MRAMs under licence is still being searched for.

Fast computer storage chips like DRAM and SRAM (Dynamic and Static Random Access Memory) which are commonly used today, have one decisive disadvantage: in the case of an interruption of the power supply, the information stored on them is irrevocably lost. The MRAM promises to put an end to this. In the MRAM, the digital information is not stored in the form of an electric charge, but via the magnetic alignment of storage cells (magnetic spins). MRAMs are very universal storage chips because they allow - in addition to the non-volatile information storage - also faster access, a high integration density and an unlimited number of writing and reading cycles.

However, the current MRAM models are not yet fast enough to outperform the best competitors. The time for programming a magnetic bit amounts to approx. 2 ns. Whoever wants to speed this up, reaches certain limits which have something to do with the fundamental physical properties of magnetic storage cells: during the programming process, not only the desired storage cell is magnetically excited, but also a large number of other cells. These excitations – the so-called magnetic ringing – are only slightly attenuated, their decay can take up to approx. 2 ns, and during this time, no other cell of the MRAM chip can be programmed. As a result, the maximum clock rate of MRAM is, so far, limited to approx. 400 MHz. Until now, all experiments made to increase the velocity have led to intolerable write errors. Now, PTB scientists have optimized the MRAM design and integrated the so-called ballistic bit triggering which has also been developed at PTB. Here, the magnetic pulses which serve for the programming are selected in such a skilful way that the other cells in the MRAM are hardly magnetically excited at all. The pulse ensures that the magnetization of a cell which is to be switched performs half a precision rotation (180°), while a cell whose storage state is to remain unchanged performs a complete precision rotation (360°). In both cases, the magnetization is in the state of equilibrium after the magnetic pulse has decayed, and magnetic excitations do not occur any more.

This optimal bit triggering also works with ultra-short switching pulses with a duration below 500 ps. The maximum clock rates of the MRAM are, therefore, above 2 GHz. In addition, several bits can be programmed at the same time which would allow the effective write rate per bit to be increased again by more than one order. This invention allows clock rates to be achieved with MRAM which can compete with those of the fastest volatile storage components.

ptb/es

Contact at PTB:
Dr. Bernhard Smandek, PTB Technology Transfer,
phone: +49(0)531 592-8303,
e-mail: bernhard.smandek@ptb.de

Erika Schow | PTB
Further information:
http://www.ptb.de

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>