Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How erosion formed the Earth-like landscape on Titan, Saturn's moon

16.12.2009
Titan's ice is stronger than most bedrock found on earth, yet it is more brittle, causing it to erode more easily, according to new research by San Francisco State University Assistant Professor Leonard Sklar.

Today, at the American Geophysical Union fall meeting, Sklar and his team presented new measurements from tests on ice as cold as minus 170 degrees Celcius which demonstrate that ice gets stronger as temperature decreases.

Understanding ice and its resistance to erosion is critical to answering how Titan's earth-like landscape formed. Titan has lakes, rivers and dunes, but its bedrock is made of ice as cold as minus 180 degrees Celcius, eroded by rivers of liquid methane.

"Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures." AGU fall meeting, Dec. 15, 8 a.m. PST.

"Experimental investigation of the temperature dependence of polycrystalline ice strength and resistance to low-velocity impacts with application to Titan." AGU fall meeting, Dec. 15, 2:55 p.m. – 3:10 p.m. PST.

The full AGU program can be found online at: http://www.agu.org/meetings/fm09/program/index.php

Elaine Bible | EurekAlert!
Further information:
http://www.sfsu.edu

Further reports about: AGU Earth-like moons PST Sklar Titan ice tensile strength

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>