Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electricity without losses

18.05.2012
Physicists in Konstanz provide impulses for a better understanding of high-temperature superconductors

Wind parks in the North Sea, plans for enormous solar power plants in North Africa: whilst the technologies for alternative power production are making huge strides, the question of efficient energy transportation still remains a major challenge. Innovative technological approaches are needed especially to avoid large energy losses and high voltages during transportation.

Together with his team and specialist colleagues from Switzerland and South Korea, the experimental physicist Professor Alfred Leitenstorfer, director of the Center for Applied Photonics (CAP) at the University of Konstanz, has succeeded in making an important contribution to the understanding of high-temperature superconductors.

A material analysis using extremely short laser impulses indicated that an interaction between the lattice vibrations of atoms and the elementary spin direction of the electrons could be responsible for superconductivity at high temperatures. The results will be published in the June edition of “Nature Materials”. The article is already available in the journal’s online edition.

Superconductivity is one of the most useful and the most impressive quantum phenomena. One of the key features is that electrical currents can be transported with no loss at all. However, the standard superconductor is associated with one considerable drawback: the materials have to be cooled down immensely before their electrical resistance is reduced to nil – and sometimes this temperature is close to absolute zero. Previously, the so-called transition temperature, at which the superconductors reach this point of no resistance, could only be very slowly increased.

That was before the discovery of cuprate, a high-temperature superconductor based on copper. Cuprate superconductors enable transition temperatures to be reached using nitrogen and even conventional means as a cooling agent instead of the more expensive helium. However, the present temperature that can be achieved is still around minus 100 degrees Celsius – far below room temperature.

The superconductor effect derives from the interplay between electrons which join to form so-called Cooper pairs, although they should in fact repel each other. How exactly this effect occurs in high-temperature superconductors is still largely unexplained. However, it is known that the effect in conventional superconductors is due to an interaction between electrons via quantized lattice vibrations, the so-called phonons. But more is needed to explain high-temperature superconductivity. It is assumed that the strongly bound Cooper pairs in high-temperature superconductors cannot be exclusively explained through the electron-phonon pairing process.

At CAP, in Professor Alfred Leitenstorfer’s department and the Konstanz working group of Dr Jure, a compound belonging to the family of iron pnictides was analysed. This family of basic materials for a new type of superconductor was discovered only a few years ago. Professor Leitenstorfer has just turned down an appointment as director of the Max Planck Institute of Microstructure Physics in Halle in favour of his Chair for Experimental Physics at the University of Konstanz. At the CAP the world’s most precise measurements in the infrared spectral range are being carried out with time resolutions of smaller than the oscillation of light. An extremely brief laser impulse was used to induce vibration in the crystal lattice of the material. This procedure is comparable to setting a pendulum into motion with the blow of a hammer, only on a different scale. During these oscillations with a frequency of five terahertz, that’s five billion oscillation cycles per second, the physicists established a link between the distortion of the crystal lattice and a wavelike order in the electron spins. “It’s a very important and surprising piece of information, that at such a high frequency and within such a brief expanse of time, the spins gain direction when the crystal lattice is distorted in a way that is impossible under conditions of equilibrium,” Alfred Leitenstorfer remarks. Both the orientation of the electron spins - the momentum of the electrons - and the vibration impulses of the atomic lattice belong to the microscopic freedom range of a solid which, when excited, also produces the temperature.

In the USA three large independent power grids have already been connected at very short distances with cooled high-temperature superconductors, so that energy excesses and deficits can be balanced out between them. “The vision is to simply lay pathways of high-temperature superconductor cables in the ground – without complex cooling techniques,” says Alfred Leitenstorfer. But to engage in the targeted development of materials with the necessary high transition temperatures, a microscopic understanding of the effect is of paramount importance. The latest results may well contribute a significant step in this direction.

Original publication: K. W. Kim, A. Pashkin, H. Schäfer, M. Beyer, M. Porer, T. Wolf, C. Bernhard, J. Demsar, R. Huber & A. Leitenstorfer: Ultrafast transient generation of spin-density-wave order in the normal state of BaFe2As2 driven by coherent lattice vibrations, Nature Materials (2012).

http://www.nature.com/nmat/journal/vaop/ncurrent/index.html

Contakt:
University of Konstanz
Communication and Marketing
Phone: + 49 7531 / 88-3603
E-Mail: kum@uni-konstanz.de
Prof. Dr. Alfred Leitenstorfer
University of Konstanz
Chair of Modern Optics and
Quantum Electronics
Universitätsstraße 10
78464 Konstanz
Germany
Phone: +49 7531 / 88-3818
E-Mail: alfred.leitenstorfer@uni-konstanz.de

Julia Wandt | idw
Further information:
http://www.uni-konstanz.de

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>