Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Effervescent atomization spray: Understanding the modeling process

03.01.2012
Understanding the atomization spray process is not only of academic interest but is also important to various industry applications such as combustion, coating, and chemical synthesis. Significant experimental investigations concerning spray behavior have been conducted in the past.

Fundamental understanding of the spray process is, however, still lacking and lags behind applications due to the high complexity of its stochastic behavior. Prof. LIN Jianzhong and his group proposed a comprehensive three-dimensional model to predict the droplet mean size and other spray characteristics by describing both primary and secondary atomization. Recently, they reviewed the theories, practical modeling treatments and the main achievements of modeling on effervescent atomization. Their work, entitled "Modeling on effervescent atomization: A review", was published in SCIENCE CHINA, 2011, DOI: 10.1007/s11433-011-4536-1.

Effervescent atomization is a method involving a twin-fluid process that involves bubbling gas within a liquid. Compared to conventional pressure, rotary and twin-fluid atomizers, the effervescent atomizer offers advantages of smaller drop sizes, reduced injection pressure, lower gas flow, a larger exit orifice, and tolerance for high viscosities. Effervescent atomization has been widely used in gas turbine combustors, IC engines furnaces and boilers, incineration, spray deposition, powder formation and other applications. Recently, the effervescent atomization method has been successfully applied in pharmaceutical coating and suspension plasma spray. Because effervescent atomization can handle a variety of liquids, it can play a pivotal role in reducing energy consumption during combustion and has potential for broad applications in the manufacture of high quality materials.

Effervescent atomizer performance has been the object of extensive research since the late 1980s. Studies on the atomization spray can be grouped into two broad categories: diagnostic measurements and numerical modeling. Diagnostic measurements have made a significant contribution to the development of effervescent atomization technology over the past two decades. Fundamental understanding of the spray process is challenging due to the high complexity of two-phase phenomena statistic behavior. Lin and his co-workers from Jiliang University and Zhejiang Universities, China, have devoted their efforts to establish a comprehensive numerical model to explain the phenomena involved in effervescent atomization spray. Their studies cover modeling of liquid fragmentation, the parametric study of various operating conditions, and the development of a fitting formula for droplet mean size and impinging factors.

The effervescent atomization process involves complex fluid-dynamic and transport phenomena. A typical effervescent atomization spray can be divided into four sub-domains, according to the different mechanisms involved. As shown in Fig.1, in the schematic for effervescent atomization spray generation, the first sub-domain is internal-mixing atomization, in which atomizing gas is bubbled into the liquid. The second step is a resulting two-phase mixture that is discharged from the atomizer orifice. Leaving the nozzle exit, the rapidly expanding gas phase will shatter the liquid into fine droplets, which can be referred to as primary atomization. The third domain lies downstream of the spray. The droplets produced by primary atomization are unstable in the turbulent spray and undergo a series of events such as collision, breakup and coalescence, and finally the droplets entrained in the gas jet will impinge on the plate or undergo further mass and heat transfer. Most modeling work has focused on the external two-phase flow out of the effervescent atomizer exit. The review paper focused on the Lagrangian treatment and introduced a comprehensive model capable of describing both primary and secondary breakup processes and correlating the droplet mean diameter and other spray characteristics with first principle operating conditions. The model comprises two sub-models. The first sub-model is used for simulating the primary breakup of the annular liquid sheath near the orifice and calculating the atomized droplet size. The second sub-model is based on a hybrid Eulerian/Lagrangian coordinate system to simulate the turbulent gas jet and injected droplets. This latter sub-model describes the gas jet and the droplet trajectory in three-dimensional geometry and also considers droplet breakup and collision.

The paper reviews the mechanism of droplet events and the numerical treatments of effervescent atomization, which involved the primary atomization of a Newtonian and a non-Newtonian fluid, particle tracking, secondary atomization and droplets collision. A comprehensive three-dimensional model of droplet-gas flow is introduced to describe the evolution of spray in the effervescent atomization spray. The evolution of droplet mean diameter along the axial distance, the mean size and statistical distribution of atomized droplets at cross sections, as well as the change in droplet velocity are calculated and analyzed to reveal their inner driving forces. The influence of operating conditions and liquid physical properties on atomization performance are discussed. The factors that promote the achievement of good atomization effects are identified. Based on the extensive computation, the influences of various operating conditions and liquid physical properties on atomization effects are quantified. The expressions for the Weber number and the K number, which is related to the operating parameters and liquid properties, are deduced. The formula can be used conveniently and effectively to judge the deposition behaviors of droplets onto surfaces for various Newton liquids. In addition to these achievements, the challenges for future numerical research and the scope for further applications are outlined.

Through academic study and modeling, the critical mechanisms and important parameters involved in effervescent atomization have been deeply understood and the applications of effervescent atomization technology have been successfully extended. This research project was mainly supported by the National Natural Science Foundation of China with Grant Nos. 11132008 and 11002136. The development of modeling approaches to atomization spray is based on previous studies involving many researchers from various institutions and universities.

Modeling of the external flow of effervescent atomization can be divided into two sub-models. The first sub-model is used to simulate the primary breakup of the annular liquid sheath near the orifice and calculating the atomized droplet size. The second sub-model is based on a hybrid Eulerian/Lagrangian coordinate system to simulate the turbulent gas jet and injected droplets.

See the article: Qian Lijuan, Lin Jianzhong. Modeling on effervescent atomization: A review. Science China Physics, Mechanics & Astronomy, 2011, DOI: 10.1007/s11433-011-4536-1

Lin Jianzhong | EurekAlert!
Further information:
http://www.zju.edu.cn

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>