Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whole Earth Telescope Watching 'Dancing' Stars

17.05.2010
After billions of years of twinkling and shining, some stars in the heavens appear to “dance” as they wind down. Maybe not like Elvis or Michael Jackson, but they definitely have a rhythmic beat, and some may even spin like a top.

For the next two weeks, the Whole Earth Telescope, an international network of cooperating astronomical observatories led by the University of Delaware, will be continuously monitoring three of these stars to try to figure out what's going on inside their luminous masses of cooling plasma.

The primary target is a white dwarf star known as GD358 in the constellation Hercules. It's made of helium and has a surface temperature estimated at around 19,000 Kelvin.

“We recently discovered that this star is pulsating a little strangely, and we are looking for signs that it is spinning like a top,” says Judi Provencal, assistant professor of physics and astronomy at the University of Delaware and director of the Delaware Asteroseismic Research Center.

A primary mission of the center, which is sponsored by Mt. Cuba Observatory in Greenville, Del., and UD, is to coordinate the activities of the Whole Earth Telescope.

A white dwarf is a “dead” star that doesn't generate its own energy like the sun does, Provencal says.

“The sun will one day become a white dwarf star, which is why we're interested in knowing more about them and what happens to any planets the original star might have had,” Provencal notes.

The Whole Earth Telescope's second target star is the rapidly pulsating PG1325+101 in the constellation Virgo, which is suspected of having one or more planets in orbit around it. The international team will be working to confirm that suspicion, observing the star in collaboration with colleague Roberto Silvotti, leader of the observing group in Italy.

The third target star, WD1524, in the constellation Serpens, was observed during the Whole Earth Telescope's 2009 international campaign. The star was a high-amplitude pulsator until right before the observing run started, when it mysteriously became a small-amplitude pulsator.

“How stars pulsate depends on their structure and composition,” says Provencal. “Last year, WD1524 completely changed how it was pulsating. Imagine ringing the Liberty Bell and having it sound like a hand bell. That would be hard to do. We don't understand how this happens with our pulsating stars. We now know that this star has changed yet again, so we are trying to understand how that can happen. Our current theoretical models of white dwarfs don't predict this sort of behavior.”

There are thousands of white dwarfs in our galaxy; however, only about 30 percent are bright enough for scientists to study using the science of stellar seismology or asteroseismics, which can determine the age, temperature, and composition of a star from its oscillations and brightness.

A white dwarf star pulsates or quakes as waves of energy travel through it. The star's outer surface sloshes from side to side, like waves on the ocean, Provencal says.

From the shape of these pulses, scientists can measure how the atmosphere is moving around in these pulsating stars and figure out what's going on inside them, and determine whether an external object like a planet is influencing the star.

The scientific goal of the Whole Earth Telescope is to obtain uninterrupted time-series measurements of “variable stars” -- stars whose brightness changes over time -- and then construct theoretical models from which their fundamental astrophysics can be derived. The approach, which has been extremely successful, according to Provencal, has placed the fledgling science of “star quakes” at the forefront of stellar astrophysics.

Through May 26, observers at these locations worldwide will be participating in the Whole Earth Telescope's latest observing campaign:

* Mt. Cuba Observatory (Greenville, Del.)
* Meyer Observatory (Texas)
* McDonald Observatory (Texas)
* Laboratorio Nacional de Astrofisica (Brazil)
* Peak Terskol Observatory, 2 m telescope (Russia)
* Peak Terskol Observatory, 0.6 m telescope (Russia)
* Teubingen Observatory (Germany)
* Mt. Suhora Observatory (Poland)
* Krakow Observatory (Poland)
* Vienna Observatory (Austria)
* PROMPT Telescopes (Chile)
* Cerro Telolo Observatory (Chile)
* Canakkale Onsekiz Mart Observatory (Turkey)
Original story/images at http://www.udel.edu/udaily/2010/may/telescope051310.html

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Physics and Astronomy:

nachricht Scientists reach back in time to discover some of the most power-packed galaxies
28.02.2017 | Clemson University

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>