Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dolphin Echolocation Performance May Degrade from Anthropogenic Noise Exposure

01.11.2011
On land, the sound of jackhammers or passing semis might make it difficult for humans to hear, but not much is known about how anthropogenic noises in the ocean – from ship’s sonar, pier pile drivers, or oil well operations, for example – affect marine species.

Since some of these marine species, such as dolphins, rely on sound to navigate, researchers from the U.S. Navy and the National Marine Mammal Foundation set out to learn more about how anthropogenic noise might affect dolphins’ echolocation ability.

The scientists’ initial results, which they will discuss at the 162nd Acoustical Society of America Meeting in San Diego, Calif., suggest continuous noise and noise at frequencies within a dolphin’s echolocation range has the potential to negatively impact echolocation performance.

At the U.S. Navy Marine Mammal Program facility, the researchers used a hydrophone to detect a dolphin’s clicks. They then fed the signal to a computer to be converted into an “echo” that was delayed and played back to the dolphin. By adjusting the delay, the scientists created echoes to simulate a physical object between 3 and 17 meters away, for both stationary and rotated objects. The dolphin was trained to make a buzzing sound when he detected the echo signal changed from a stationary object to a rotated object. While playing the echoes, the scientists also played different types of manmade noise and tested how each noise type affected the dolphin’s ability to identify when the echo changed. The researchers tested seven different noise types at varying frequencies and durations.

“Preliminary results show that intermittent noise at frequencies outside of the echolocation range of the dolphin had little effect on his echolocation performance, while continuous noise and noise within the dolphin’s echolocation range decreased performance at a farther distance,” says Eryn Wezensky, a researcher on the project. One surprising result, she notes, is that Gaussian noise [broad spectrum noise whose amplitude distribution follows a normal curve] in the mid-frequency range, which is outside the echolocation range of the dolphin, still decreased the dolphin’s ability to detect the echo change at distances from 13 to 16 meters. As a next step, the researchers plan to analyze the dolphin’s click characteristics under different noise conditions, to test whether noise might prompt dolphins to compensate with louder clicks, or slow the animals’ response time.

The presentation 5aAB5, “Performance of an echolocating bottlenose dolphin in the presence of anthropogenic masking noise,” by Eryn M. Wezensky et al. will be at 9:15 a.m. on Friday, Nov. 4.

Charles E. Blue | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>